## TETRA TECH, INC.

### TECHNICAL MEMORANDUM

Basewide Groundwater Monitoring Program Report Winter 2006 (Q1) Installation Restoration Program Site 2 Vandenberg Air Force Base, California

09 June 2006

Prepared by: Tetra Tech, Inc. 4213 State Street, Suite 100 Santa Barbara, California 93110

### 1.0 INTRODUCTION

This report documents the activities and results of the winter 2006 groundwater monitoring at Installation Restoration Program Site 2 (Old Base Service Station, or OBSS), Operable Unit 6, Vandenberg Air Force Base (AFB), Santa Barbara County, California. Samples were collected at Site 2 by Tetra Tech, Inc. (Tetra Tech) during February 2006. The location of Site 2 is shown on Figure 1.

The groundwater monitoring is being completed in accordance with the Basewide Groundwater Monitoring Program (BGMP) Work Plan (Tetra Tech 2000a), the BGMP Health and Safety Plan Addendum (Tetra Tech 2000b), the Basewide Sampling and Analysis Plan (Tetra Tech 2003), the BGMP Quality Assurance Project Plan (QAPP) Addendum (Tetra Tech 2004a), the Vandenberg AFB Hazardous Waste Management Plan (U.S. Air Force 2002), and the Waste Management Plan Addendum (Tetra Tech 2005). Regulatory oversight of the work is being performed by the California Department of Toxic Substances Control (DTSC) and Regional Water Quality Control Board—Central Coast Region (RWQCB).

Site background information is summarized in Section 2.0. The scope of work and methodology for groundwater monitoring are presented in Section 3.0. The results of the quarterly monitoring are presented in Section 4.0. Quality Assurance/Quality Control is discussed in Section 5.0. Recommendations for future sampling are presented in Section 6.0.

### 2.0 BACKGROUND

### 2.1 SITE DESCRIPTION AND HISTORY

Installation Restoration Program Site 2 is located in the main cantonment area, north of the intersection of Wyoming and Summersil Avenues. In early 2000, a Tee-Ball field was constructed over most of the Site (Figure 1). The Child Development Center playground is located to the northeast.

The OBSS had a service station building and three pump islands on a 200-foot by 200-foot asphalt lot. The site had four 10,000-gallon gasoline underground storage tanks (USTs), a 500-gallon aboveground waste oil tank, and an oil/water separator (OWS). The OBSS dispensed leaded and unleaded gasoline from 1941 until 1981.

All structures, tanks, and piping associated with the OBSS were removed between 1981 and 1998 (HydroGeoLogic [HGL] 2001). All four gasoline USTs, which were located at the northwest corner of the site, were removed in 1981. In 1992, Jacobs Engineering Group, Inc. (JEG) removed the concrete OWS and fuel distribution piping (HGL 2001). In 1998, the 500-gallon waste oil tank was removed. During the removal of the OBSS building, the pump islands, and the pavement in 1998, monitoring wells 2-MW-2, and OS-MW-4 were reportedly destroyed and wells OS-MW-3A and OS-MW-2 were damaged (HGL 2001).

In 1999, IT Corporation, Inc. (IT) began investigations at the site. In September 1999, IT conducted a shallow soil investigation. HGL continued the investigation and, in November 1999, removed 170 cubic yards of soil below the former location of the two easternmost pump islands (along the southern portion of the site) (HGL 2001). The Tee-Ball field was built several months after completion of the excavation activities (Martinez 2001).

During the construction of the Tee-Ball field and the realignment of Wyoming Avenue and Utah Avenue, monitoring wells 2-MW-5 through 2-MW-9, OS-MW-3A, and OS-MW-4 were buried under fill material. Wells 2-MW-5 through 2-MW-9 were subsequently found and are not damaged. In September 2000,

Tetra Tech was requested to determine the condition of wells OS-MW-2, OS-MW-3A, and OS-MW-4. Well OS-MW-2 was found and was determined to be undamaged. Tetra Tech was unable to find monitoring wells OS-MW-3A and OS-MW-4 due to the amount of fill material covering them. The condition of these wells is unknown; however, it appears likely they have been destroyed. In a letter dated 6 February 2001 the Air Force recommended no further search for these wells. The RWQCB concurred with this recommendation in a letter dated 15 March 2001.

In February 2002, Tetra Tech installed a remote sampling system for wells 2-MW-5, 2-MW-7, 2-MW-8, and 2-MW-9 at Site 2. The system was designed to facilitate quarterly sampling of these wells, which are buried under the Tee-Ball field, without delaying use of the Tee-Ball field or impacting the condition of the grass on the field or surrounding grounds.

The remote sampling system was installed with watertight well caps and continuous tubing. The static water levels of these wells are measured using a pressure transducer that calculates the height of a water column above an open-ended tube suspended in the casing. The pressure transducer is zeroed to ambient pressure before the first reading is taken. Since the wells are sealed to prevent surface water intrusion, the air inside the casings is no longer at ambient pressure. For this reason the static water levels measured by the remote sampling system may be different from what is measured by the pressure transducer.

### 2.2 HYDROGEOLOGY

Site 2 is located on Burton Mesa, where groundwater typically occurs unpredictably in small lenses perched on low-permeability layers. At Site 2, groundwater is encountered in apparently discontinuous perched lenses in the unconsolidated sediments overlying Monterey Formation bedrock and, more importantly, in fractured cherts and porcelanites (HGL 2001). Groundwater occurring in this fractured zone within the Monterey Formation represents the groundwater monitoring network sampled under the BGMP at Site 2.

Groundwater depths range from 14 to 31 feet below ground surface (bgs). However, groundwater was encountered during drilling at approximately 10 feet below the static level measured in the monitoring wells (HGL 2001).

Groundwater levels measured in February 2006 indicate the groundwater elevation ranged from approximately 450 to 453 feet above mean sea level (msl) (Table 1). Based on data from this quarter, the interpreted direction of groundwater flow at Site 2 was to the northwest with an average hydraulic gradient of 0.01 feet per foot (Figure 1).

Monitoring wells at Site 2 are screened between 411.3 and 452.5 feet above msl (Tetra Tech 2004b). According to the Supplemental RI Report completed by HGL, the deep groundwater zone occurs below lenses of relatively impermeable material. The boring logs of monitoring wells sampled as part of the BGMP show groundwater was encountered at depths below laminated mudstone, silty clay, or clay layers (HGL 2001). Therefore, the groundwater sampled as part of the BGMP is from the deep groundwater zone.

### 3.0 SCOPE OF WORK

The work performed during winter 2006 at Site 2 included measuring groundwater elevations, collecting groundwater samples for laboratory analysis, and preparing this report.

### 3.1 GROUNDWATER MONITORING METHODOLOGY

Eleven wells were sampled at Site 2 during winter 2006. Dedicated MicroPurge pumps were used for purging and sampling groundwater from all Site 2 wells. Sampling was conducted in accordance with the documents cited in Section 1.0. Measured groundwater elevations are presented in Table 1, and groundwater contours are illustrated on Figure 1. Purge records are provided in Appendix A.

In general, wells were purged until a minimum of one pump and tubing volume of water was removed and water quality parameters had stabilized. Criteria for determining stabilization are three successive measurements of temperature within  $\pm 1$  degree Celsius, pH within  $\pm 0.1$ , conductivity within  $\pm 5$  percent, and a turbidity reading of less than 5 nephelometric turbidity units (NTUs). In cases where stability or a turbidity reading of less than 5 NTUs was not obtained, samples were collected after purging a minimum of five pump and tubing volumes of water.

### 3.1.1 MicroPurge Groundwater Sampling

MicroPurge sampling was conducted at all monitoring wells sampled at Site 2 during winter 2006. The pumping rates were calibrated for each well prior to purging to maintain a static water level (i.e., minimal drawdown). Due to high turbidity, wells 2-MW-1, 2-MW-10, 2-MW-12, OS-MW-1 were sampled after purging five pump and tubing volumes of water. Well OS-MW-2 was sampled after purging five pump and tubing volumes of water due to unstable conductivity readings.

### 4.0 RESULTS

Temperature, conductivity, pH, and turbidity were measured during purging and sampling. Field parameter readings measured immediately prior to sampling are presented in Table 2. Fixed laboratory analyses were performed by EMAX Laboratories, Inc. in Torrance, California. Samples were analyzed according to the work plan (Tetra Tech 2000a) for dissolved metals by U.S. Environmental Protection Agency (EPA) method SW6010B, total petroleum hydrocarbons as gasoline (TPHg) by EPA method SW8015B, volatile organic compounds (VOCs) by EPA method SW8260B, semivolatile organic compounds (SVOCs) by EPA method SW8270C, and polynuclear aromatic hydrocarbons (PAHs) by EPA method SW8270C with selected ion monitoring (SIM). Laboratory analyses and data validation were conducted according to the QAPP Addendum (Tetra Tech 2004a). Data validation was performed on 100 percent of the analytical data. Analytical results are presented in Tables 3 through 5 and on Figure 2. A historical summary of key contaminants of concern (COCs) is presented in Table 6 and on Figures 3A and 3B. Figure 3A contains historical data for key COCs from December 1999 through fall 2003, and Figure 3B contains historical data for key COCs from winter 2004 to present. Hydrographs showing historical benzene concentrations in groundwater from well 2-MW-7 and benzene and naphthalene concentrations in groundwater from well 2-MW-8 are presented on Figure 4. Chain-of-custody records are provided in Appendix B.

### 4.1 METALS

Groundwater samples collected from all wells sampled at Site 2 this quarter were analyzed for dissolved metals. Dissolved metal concentrations were compared to the 95th percentile background threshold values (BTVs) for groundwater (JEG 1994) and primary maximum contaminant levels (MCLs).

Aluminum was detected above the BTV of 1,200 micrograms per liter ( $\mu$ g/L) and the MCL of 1,000  $\mu$ g/L in groundwater from well 2-MW-8 at a concentration of 5,750  $\mu$ g/L (Table 3 and Figure 2).

Beryllium was detected above the BTV of 0.3  $\mu g/L$  and the primary MCL of 4  $\mu g/L$  in groundwater from well 2-MW-8 at a concentration of 7.86  $\mu g/L$ . In the groundwater sample from well 2-MW-7, beryllium was detected above the BTV at a concentration of 1.62  $\mu g/L$ .

Cadmium was detected above the BTV and primary MCL of 5  $\mu$ g/L in groundwater from wells 2-MW-1, 2-MW-7 through 2-MW-10 and OS-MW-1 at concentrations ranging from 7.93 to 84.8  $\mu$ g/L.

Nickel was detected above the MCL of 100  $\mu$ g/L in groundwater from seven wells at concentrations ranging from 141 to 229  $\mu$ g/L (Table 3). These concentrations are below the BTV of 490  $\mu$ g/L.

Selenium was detected above the BTV of 3  $\mu$ g/L in groundwater from wells 2-MW-1 (parent and duplicate sample), 2-MW-5, 2-MW-7 through 2-MW-11, OS-MW-1, and OS-MW-2 (parent and duplicate sample) at concentrations ranging from 6.99 and 46.8  $\mu$ g/L, respectively.

In addition, arsenic, barium, calcium, cobalt, magnesium, molybdenum, potassium, sodium, and zinc were detected at concentrations above their respective BTVs in one or more Site 2 wells. The key COC metals concentrations detected during winter 2006 were within the ranges of those previously detected (Table 6 and Figures 3A and 3B).

### 4.2 TOTAL PETROLEUM HYDROCARBONS

Groundwater samples collected from wells 2-MW-7 through 2-MW-9, OS-MW-1, and OS-MW-2 were analyzed for TPHg. TPHg were detected in groundwater from wells 2-MW-7 and 2-MW-8 at concentrations of 0.29 and 2.8 milligrams per liter (mg/L), respectively (Table 5). The TPHg concentrations detected during winter 2006 were within the range of those previously detected. The TPHg concentrations detected in groundwater from well 2-MW-8 have been above the Leaking Underground Fuel Tank action level for TPH in groundwater of 1 mg/L every sampling round since the MicroPurge pumps were installed in winter 2002 (Table 6 and Figures 3A and 3B).

### 4.3 VOLATILE ORGANIC COMPOUNDS

Groundwater samples collected from wells 2-MW-7 through 2-MW-9, OS-MW-1, and OS-MW-2 were analyzed for VOCs. Benzene was detected above the primary MCL of 1  $\mu$ g/L in groundwater from wells 2-MW-7 and 2-MW-8 at concentrations of 1.7 and 67  $\mu$ g/L, respectively (Table 4).

Concentrations of benzene, ethylbenzene, toluene, and xylenes (BTEX) detected in groundwater from well 2-MW-8 increased significantly between fall 2001 and winter 2002, which coincides with the installation of the MicroPurge pump during winter 2002 (Table 6 and Figures 3A and 3B). Between winter 2002 and spring 2002, concentrations of these VOCs decreased to levels approximately two times higher than the concentrations detected prior to the installation of the MicroPurge systems. Concentrations of benzene in groundwater from wells 2-MW-7 and 2-MW-8 have been generally increasing (Figure 4). All key VOC concentrations in groundwater from well 2-MW-8 increased between fall 2005 and winter 2006. All of the benzene concentrations detected in groundwater from well 2-MW-8 since December 1999 have been above the MCL of 1 µg/L. There is no apparent correlation between contaminant concentration and groundwater elevation in wells 2-MW-7 and 2-MW-8. Benzene has not been detected in groundwater from downgradient well 2-MW-9 since December 1999, indicating the VOC plume in groundwater is not moving downgradient. During the remedial investigation performed by HGL, BTEX were detected in deep and shallow soil samples collected near well 2-MW-8, and 170 cubic yards of soil were removed from the site in November 1999 (HGL 2001).

### 4.4 SEMIVOLATILE ORGANIC COMPOUNDS AND POLYNUCLEAR AROMATIC HYDROCARBONS

Groundwater samples collected from wells 2-MW-1, 2-MW-3, 2-MW-5, 2-MW-7 through 2-MW-9, OS-MW-1, and OS-MW-2 were analyzed for SVOCs. Groundwater samples from wells 2-MW-8 and OS-MW-2 were also analyzed for PAHs. Naphthalene was detected in groundwater from well 2-MW-8 at a concentration of 23 µg/L using EPA method SW8270C for SVOCs, and 21 µg/L using EPA method SW8270C with SIM for PAHs (Table 5). The compound 2-methylnaphthalene was detected in groundwater from the same well at a concentration of 27 µg/L using EPA method SW8270C.

Naphthalene has been detected in groundwater collected from well 2-MW-8 since December 1999 at concentrations ranging from 1.07  $\mu$ g/L (December 1999) to 28.8  $\mu$ g/L (winter 2004) (Table 6). Naphthalene has been detected at concentrations above the California Department of Health Services (DHS) notification level (NL) of 17  $\mu$ g/L during eight sampling events since December 1999. The compound 2-methylnaphthalene has been detected in groundwater from well 2-MW-8 since summer 2001 at concentrations ranging from 5.7  $\mu$ g/L (fall 2001) to 38.2  $\mu$ g/L (winter 2004) (Appendix C: Table C-1). Concentrations of both compounds generally show an increasing trend marked by a significant decrease in concentrations between winter 2004 and spring 2005 (Figure 4 and Appendix C: Figure C-1).

### 5.0 QUALITY ASSURANCE/QUALITY CONTROL

All of the analytical data presented in this report have been validated according to the QAPP Addendum (Tetra Tech 2004a). The data validation process includes review of sample preservation, temperature, and hold times; detection and quantitation limits; instrument calibration; and equipment blank, trip blank, method blank, laboratory control sample, and matrix spike/matrix spike duplicate. Data validation qualifiers and comments are provided on the data tables to indicate the results of the data validation and to quantitatively indicate the usability of the data. In addition, field sampling records are reviewed to assess the potential for any field conditions to adversely impact the data quality.

There were no significant quality assurance/quality control discrepancies with the data presented in this report. The data quality objectives for the winter 2006 sampling at Site 2 were achieved.

### 6.0 **RECOMMENDATIONS**

In the fall 2005 Groundwater Monitoring Report for Site 2, Tetra Tech and the Air Force made the following recommendations:

- 1. Reduce the analyte list for dissolved metals at Site 2 to key BGMP COCs aluminum, beryllium, cadmium, selenium, and thallium. The RWQCB and DTSC commented that sodium concentrations reported in the fall 2005 report are significantly elevated. In addition, the RWQCB and DTSC objected to reducing the analyte list based exclusively on risk evaluations. Therefore, the analyte list will not be reduced at this time.
- 2. Reduce the sampling frequency for dissolved metals from semiannually to annually during summer quarters for wells 2-MW-3, 2-MW-6, 2-MW-7, 2-MW-9, OS-MW-1, and OS-MW-2 and from quarterly to annually during winter quarters for wells 2-MW-8 and 2-MW-11. The RWQCB and DTSC had no objection to reducing the sampling frequency and requested that the Air Force sample all wells proposed for annual metals analysis during the same sampling event. Therefore wells 2-MW-3, 2-MW-6, 2-MW-7, 2-MW-8, 2-MW-9, 2-MW-11, OS-MW-1, and OS-MW-2 will be sampled annually for dissolved metals during the winter sampling events.

- 3. Reduce the sampling frequency for TPHg from semiannually to annually during winter sampling events for well OS-MW-2. The RWQCB and DTSC concurred with this recommendation.
- 4. Reduce the sampling frequency for SVOCs from semiannually to annually during winter sampling events for well 2-MW-7. The RWQCB and DTSC concurred with this recommendation.

Recommendations for the winter 2006 Groundwater Monitoring Report are presented below:

- 1. Tetra Tech and the Air Force recommend removing SVOC analysis for wells 2-MW-1, 2-MW-3, 2-MW-5, 2-MW-7, OS-MW-1, and OS-MW-2. The SVOCs naphthalene, 2-methylnaphthalene, and indeno(1,2,3-cd)pyrene have not been detected in groundwater from these wells since BGMP sampling of these wells began in spring 2001, with the exception of indeno(1,2,3-cd)pyrene detected in groundwater from well OS-MW-2 at a concentration of 4.27 μg/L during winter 2004 (Table 6 and Appendix C: Table C-1). The SVOC bis (2-ethylhexyl)phthalate has been detected in groundwater from Site 2 wells; however, it is a common laboratory contaminant and detections are believed to have been a result of laboratory contamination and not present in site groundwater. Wells 2-MW-1, 2-MW-3, 2-MW-5, 2-MW-7, and OS-MW-2 are crossgradient from the SVOC plume near well 2-MW-8 and have not been historically in the plume. Well OS-MW-1 is downgradient from the SVOC plume near well 2-MW-8 and has not been historically in the SVOC plume. Well 2-MW-9, the closest well downgradient from well 2-MW-8, will be retained as the sentry well to monitoring for possible migration of SVOCs in groundwater near well 2-MW-8 (Figure 1).
- 2. Tetra Tech and the Air Force recommend reducing SVOC analysis for well 2-MW-8, from quarterly to semiannually during winter and summer quarters. The highest historical concentrations of SVOCs were most often detected during winter quarters (Figure 4). Naphthalene has been detected in groundwater from well 2-MW-8 at concentrations that are often above the DHS NL of 17  $\mu$ g/L and historical 2-methylnaphthalene concentrations from this well range from 5.7 to 38.2  $\mu$ g/L (Table 6 and Appendix C: Table C-1). Concentrations of naphthalene and 2-methylnaphthalene have generally been stable (Figure 4 and Appendix C: Figure C-1.
- 3. Tetra Tech and the Air Force recommend removing PAH analysis for wells 2-MW-8 and OS-MW-2. During the last 4 quarters, naphthalene has been detected by the PAHs analysis using EPA method SW8270C SIM at concentrations similar to those detected by the SVOC analysis using EPA method SW8270C (Appendix C; Table C-2). Indeno(1,2,3-cd)pyrene is a target PAH that was detected once in groundwater from well OS-MW-2 using the SVOC analysis by EPA method SW8270C and once in groundwater from well 2-MW-8 using the PAHs analysis by EPA method SW8270C SIM. This compound has not been detected using either method in either well during the past 4 quarters (Appendix C; Table C-1). The SVOC analysis by EPA method SW8270C is necessary and PAH analysis by EPA method SW8270C SIM is redundant for three reasons: 1) 2-methylnaphthalene is an analyte under the SVOC analysis by EPA method SW8270C that has been detected at concentrations up to 38.2 μg/L and not an analyte under the PAHs analysis using EPA method SW8270C SIM, 2) since indeno(1,2,3-cd)pyrene has not been consistently detected in groundwater from site wells using PAH analysis, it is no longer warranted, and 3) naphthalene concentrations detected under the SVOC analysis by EPA method SW8270C and the PAH analysis using EPA method SW8270C SIM are similar.
- 4. Tetra Tech and the Air Force recommend removing TPHg analysis for wells OS-MW-1 and OS-MW-2. TPHg have not been detected in groundwater from wells OS-MW-1 and OS-MW-2

during the BGMP with the exception of low concentrations (0.02 and 0.03 mg/L) detected in samples collected during winter 2004 (Table 6); these results were qualified for blank contamination and believed to not be present in the groundwater from these wells. Well OS-MW-1 is downgradient from well 2-MW-8. Well 2-MW-8 is the only well with TPHg concentrations above the LUFT action level for TPH in groundwater of 1 mg/L. Well 2-MW-9, the closest well downgradient from well 2-MW-8, will continue to be sampled annually during winter quarters and will serve as the sentry well to monitor for possible migration of TPHg in groundwater near well 2-MW-8 (Figure 1). Well OS-MW-2 is crossgradient from the TPHg plume near well 2-MW-8.

These recommendations were developed in accordance with the Air Force Center for Environmental Excellence Long-Term Monitoring Optimization Guide (U.S. Air Force 1997) and the decision tree developed by Tetra Tech for the BGMP at Vandenberg AFB (Tetra Tech 2002).

The spring 2006 sampling will be conducted according to the work plan (Tetra Tech 2000a).

### 7.0 REFERENCES

### HydroGeoLogic, Inc. (HGL)

2001 Supplemental Remedial Investigation Report, Site 2-Old Base Service Station, Vandenberg AFB, California. Final. Prepared for the Air Force Center for Environmental Excellence. December.

### Jacobs Engineering Group, Inc. (JEG)

1994 Basewide Background Sampling Report. Final. Prepared for the Air Force Center for Environmental Excellence. June.

### Martinez, Pablo

2001 30 CES/CEVR Installation Restoration Program Geologist, personal communication, Vandenberg AFB.

### Tetra Tech, Inc. (Tetra Tech)

2000a Basewide Groundwater Monitoring Program Work Plan. Prepared for 30 CES/CEV, Installation Restoration Program, Vandenberg Air Force Base, California, and Headquarters Air Force Space Command, Peterson Air Force Base, Colorado. December.

### Tetra Tech, Inc. (Tetra Tech)

2000b Basewide Groundwater Monitoring Program Health and Safety Plan Addendum. Prepared for 30 CES/CEV, Installation Restoration Program, Vandenberg Air Force Base, California, and Headquarters Air Force Space Command, Peterson Air Force Base, Colorado. December.

### Tetra Tech, Inc. (Tetra Tech)

2002 Basewide Groundwater Monitoring Program Interpretation, Visualization, and Optimization, Vandenberg Air Force Base Installation Restoration Program. Presentation prepared for 30 CES/CEVR Installation Restoration Program, Vandenberg Air Force Base, California. March.

### Tetra Tech, Inc. (Tetra Tech)

2003 Final Basewide Sampling and Analysis Plan. Prepared for 30 CES/CEV Installation Restoration Program, Vandenberg Air Force Base, California, and Headquarters Air Force Space Command, Peterson Air Force Base, Colorado. September.

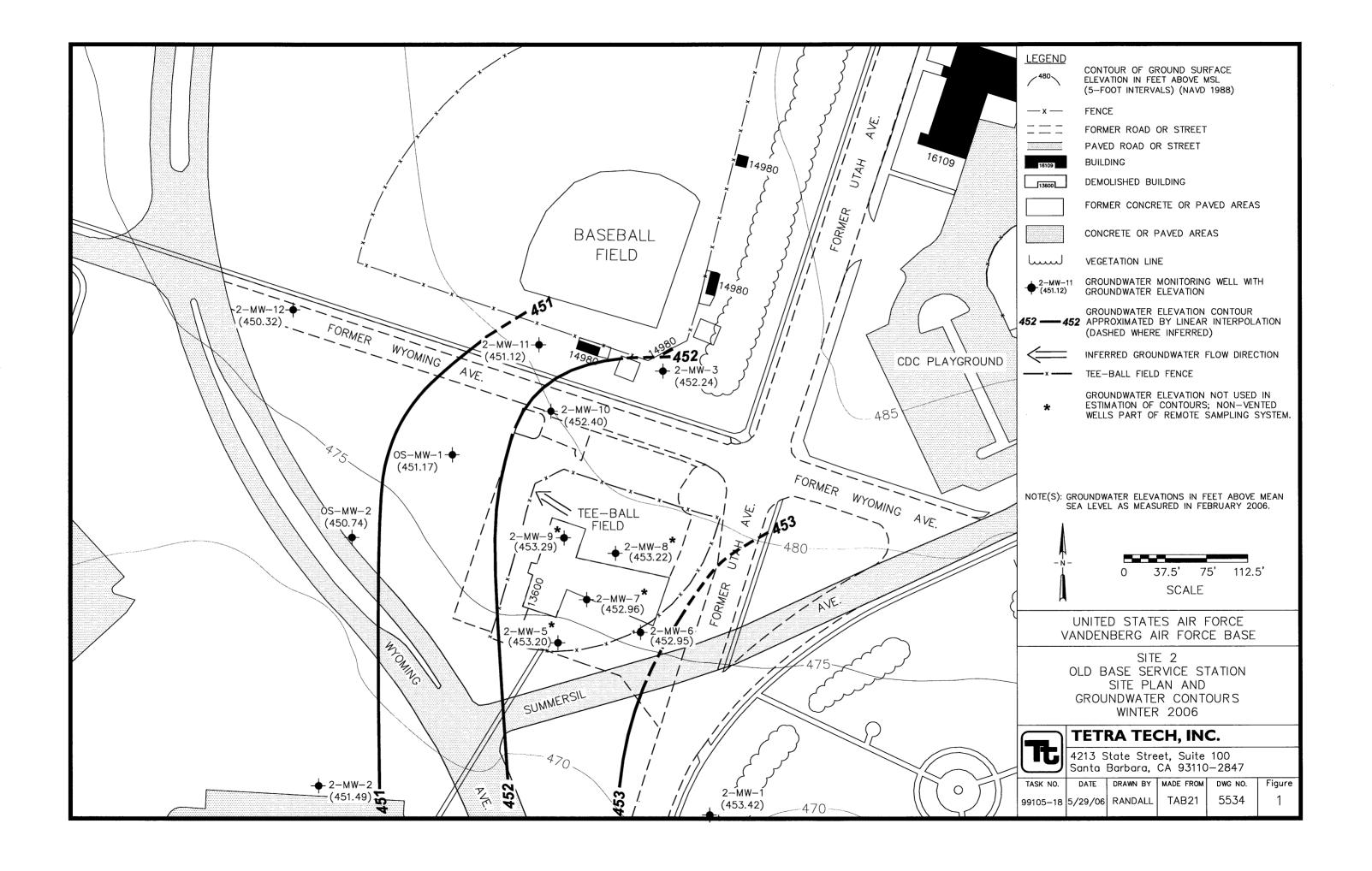
### Tetra Tech, Inc. (Tetra Tech)

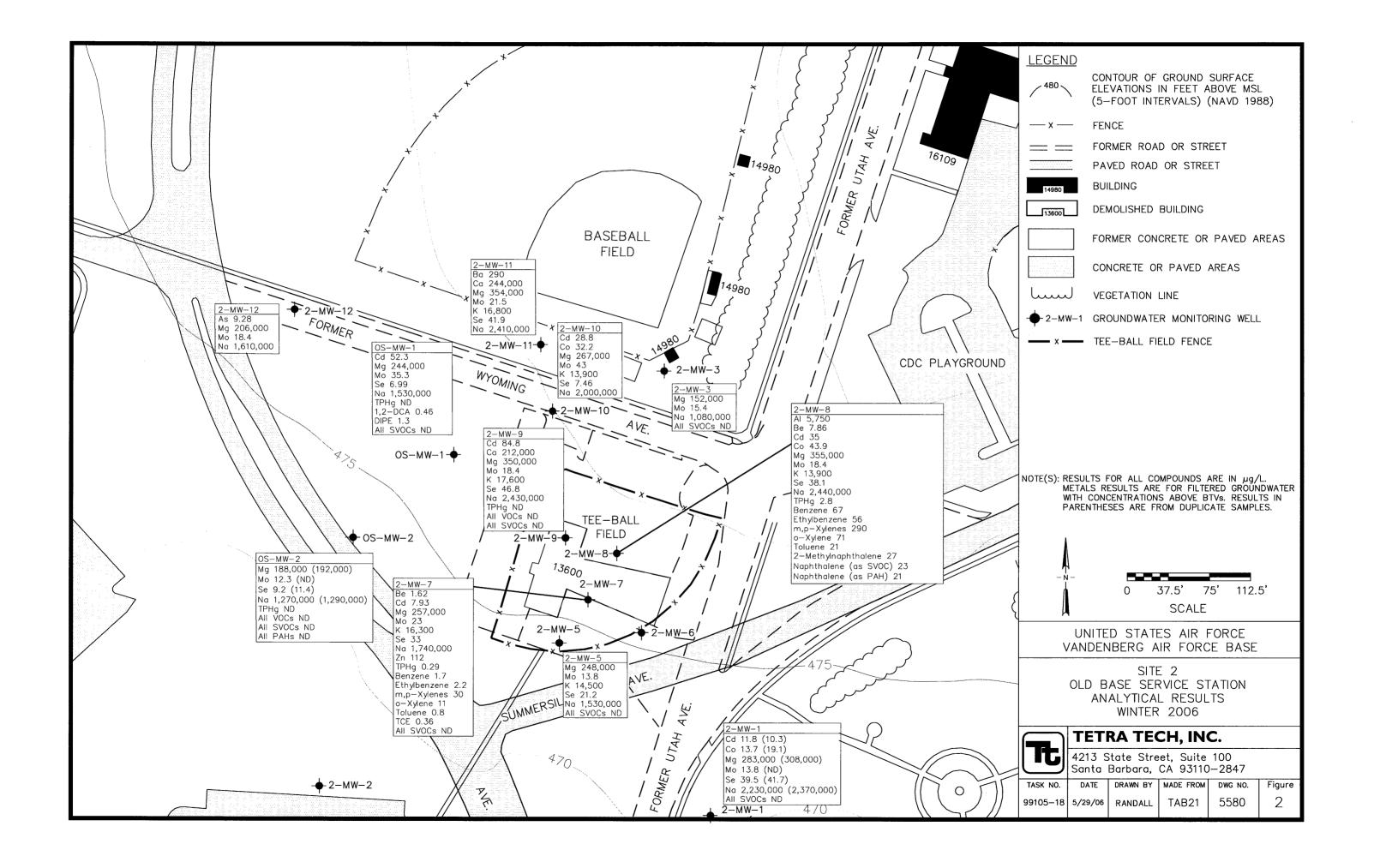
2004a Basewide Groundwater Monitoring Program Quality Assurance Project Plan Addendum. Final. Prepared for Department of the Air Force 30 CES/CEVR, 806 13th Street, Suite 116, Vandenberg Air Force Base, California, and Department of the Air Force, Air Force Center for Environmental Excellence, DERA Restoration Division, 3300 Sidney Brooks, Brooks City-Base, Texas. July.

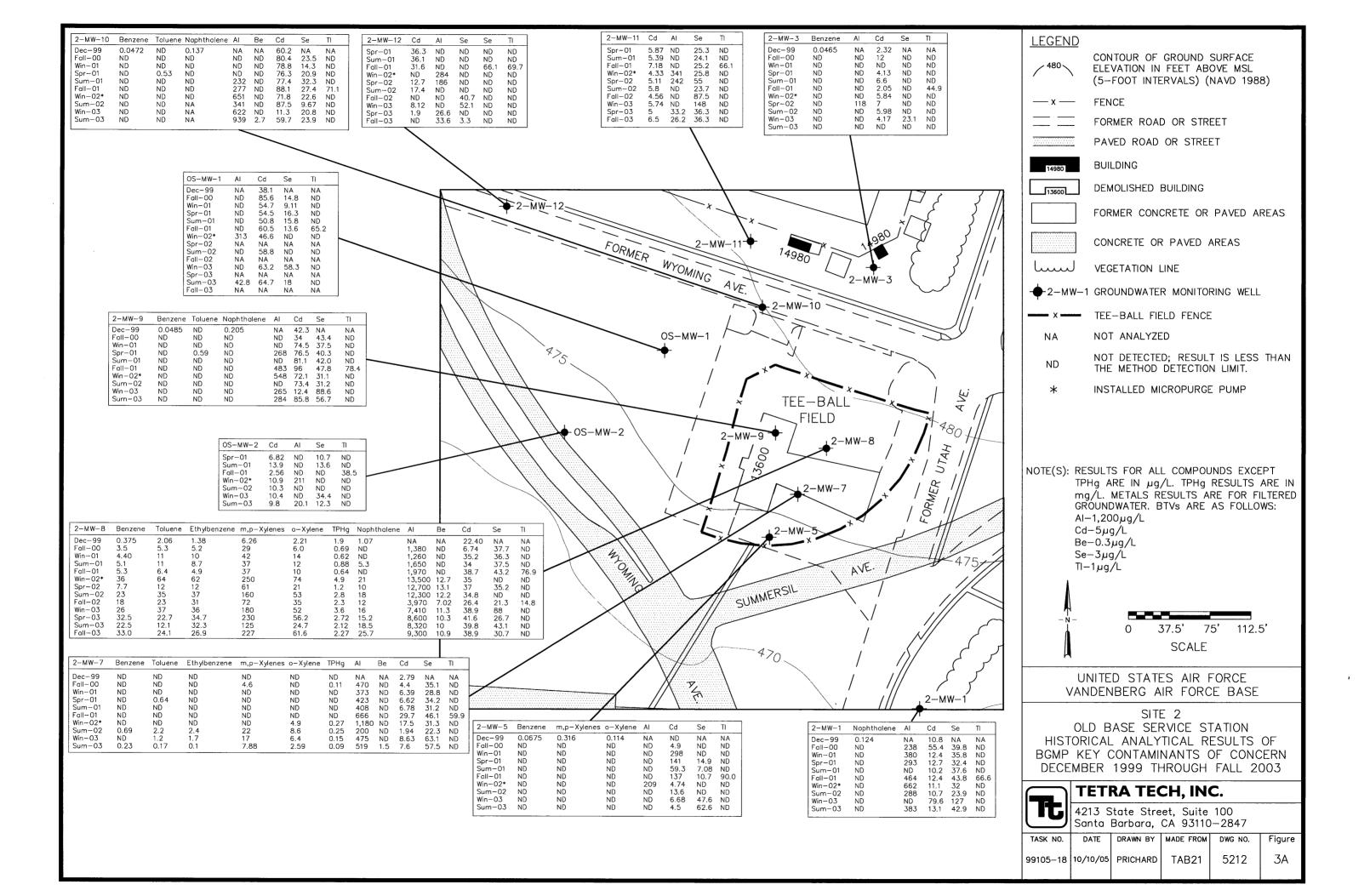
### Tetra Tech, Inc. (Tetra Tech)

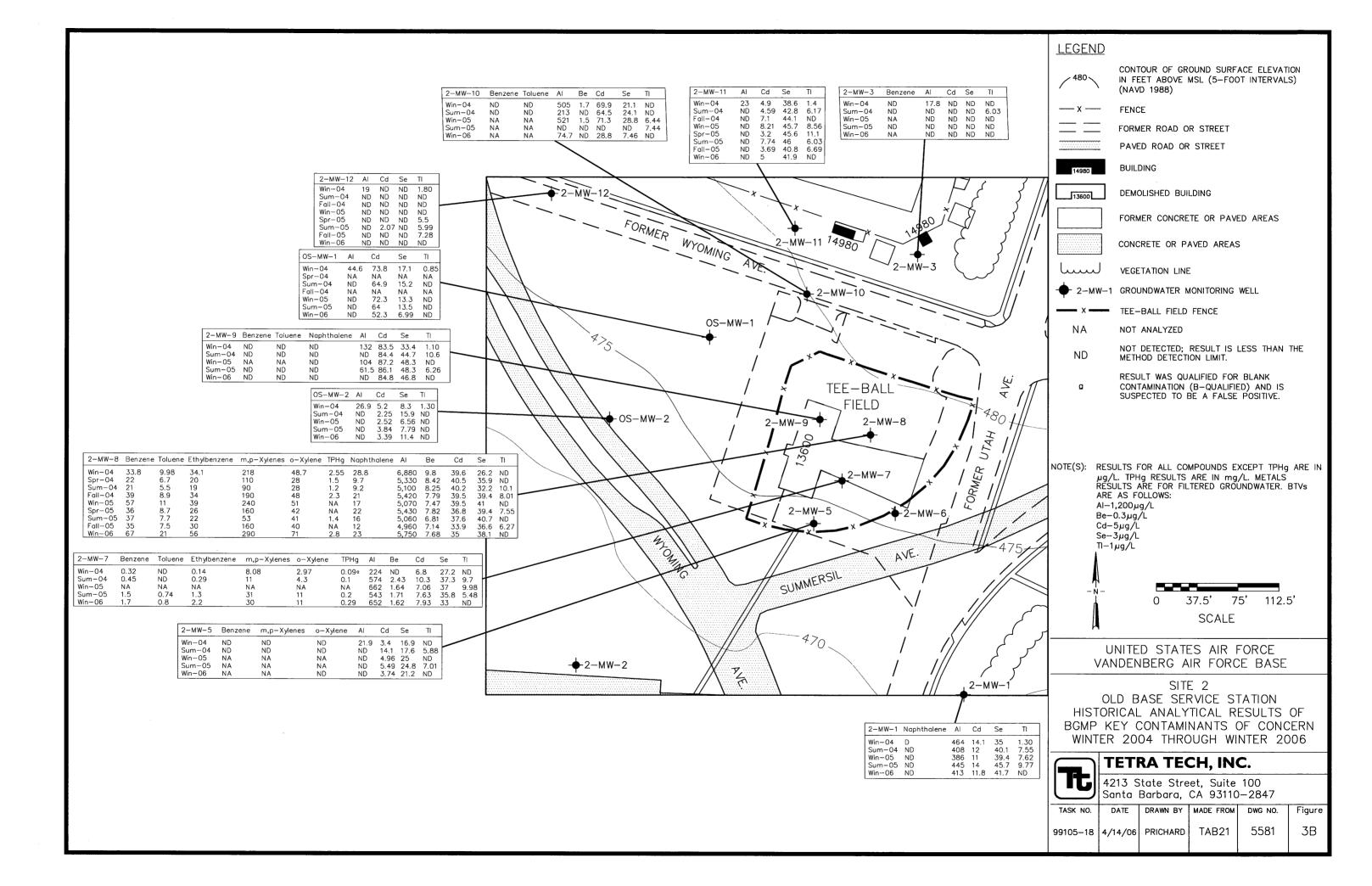
2004b Basewide Groundwater Monitoring Program Report, Summer 2004, Installation Restoration Program Site 2, Vandenberg Air Force Base, California. Prepared for Department of the Air Force 30 CES/CEVR, 806 13th Street, Suite 116, Vandenberg Air Force Base, California, and Department of the Air Force, Headquarters Air Force Center for Environmental Excellence/ICS, 3300 Sidney Brooks, Brooks City-Base, Texas. December.

### Tetra Tech, Inc. (Tetra Tech)


2005 Waste Management Plan Addendum. Final. 730 CES/CEVR, Installation Restoration Program, Vandenberg Air Force Base, California, and Headquarters Air Force Space Command, Peterson Air Force Base, Colorado. February.


### U.S. Air Force


1997 Long-Term Monitoring Optimization Guide, Final, Version 1.1. Headquarters Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas. October.


### U.S. Air Force

2002 Headquarters Thirtieth Space Wing, Vandenberg AFB, California. Hazardous Waste Management Plan, 30 SW Plan 32-7043-A, Change 1. HQ 30th Space Wing, Vandenberg Air Force Base, California 93437-6261. April.









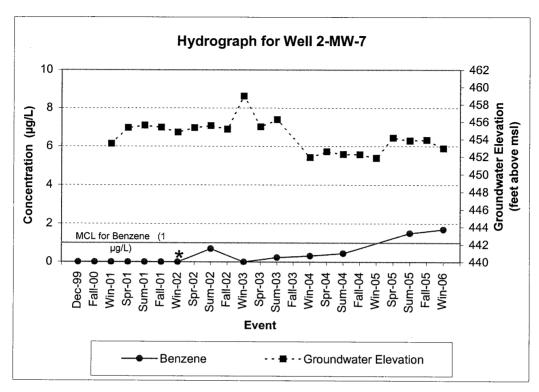
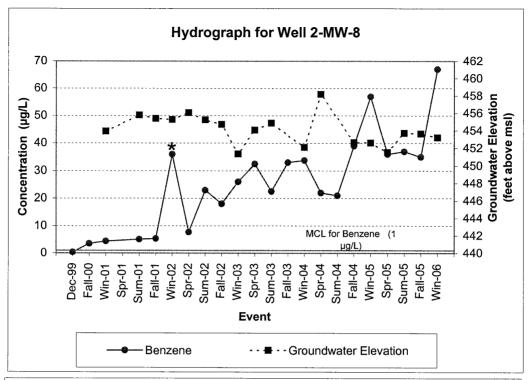
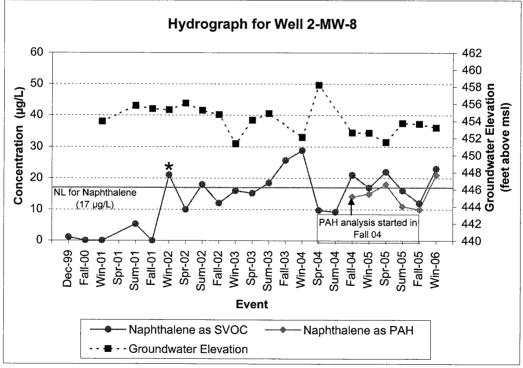





Figure 4. Groundwater Elevations and Concentrations of Benzene and Naphthalene at Site 2.

Naphthalene was not detected in groundwater from well 2-MW-7.





★ - MicroPurge pump installed during winter 2002.

NL

- California Department of Health Services (DHS) notification level (No MCL is available for naphthalene)

Figure 4. Groundwater Elevations and Concentrations of Benzene and Naphthalene at Site 2.

IRP Site 2 (Old Base Service Station) Vandenberg AFB, California Groundwater Elevations

| Monitoring | Top of Casing<br>Elevation | Date        | Groundwater<br>Depth | 9           | roundwater Elev | Groundwater Elevation (feet above msl) | (t          |
|------------|----------------------------|-------------|----------------------|-------------|-----------------|----------------------------------------|-------------|
| Well       | (feet above msl)           | Measured    | (feet below TOC)     | Winter 2006 | Fall 2005       | Summer 2005                            | Spring 2005 |
|            |                            | Winter 2006 | Winter 2006          |             |                 |                                        |             |
| 2-MW-1     | 468.26                     | 06-Feb-06   | 14.84                | 453.42      | 453.56          | 453.89                                 | 453.69      |
| 2-MW-2     | 468.34                     | 06-Feb-06   | 16.85                | 451.49      | NM              | NM                                     | NM          |
| 2-MW-3     | 482.84                     | 06-Feb-06   | 30.60                | 452.24      | 452.36          | 452.77                                 | 452.54      |
| $2-MW-5^a$ | 474.50                     | 06-Feb-06   | 21.30                | 453.20      | 453.21          | 453.01                                 | 453.10      |
| 2-MW-6     | 475.38                     | 06-Feb-06   | 22.43                | 452.95      | NM              | NIM                                    | NM          |
| $2-MW-7^a$ | 475.39                     | 06-Feb-06   | 22.43                | 452.96      | 453.93          | 453.84                                 | 454.18      |
| $2-MW-8^a$ | 476.51                     | 06-Feb-06   | 23.29                | 453.22      | 453.66          | 453.73                                 | 451.54      |
| $2-MW-9^a$ | 476.24                     | 06-Feb-06   | 22.95                | 453.29      | 453.44          | 452.91                                 | 453.73      |
| 2-MW-10    | 479.94                     | 06-Feb-06   | 27.54                | 452.40      | 452.51          | 452.44                                 | 452.40      |
| 2-MW-11    | 482.10                     | 06-Feb-06   | 30.98                | 451.12      | 451.15          | 451.56                                 | 451.32      |
| 2-MW-12    | 477.77                     | 06-Feb-06   | 27.45                | 450.32      | 450.57          | 450.67                                 | 450.39      |
| OS-MW-1    | 476.28                     | 06-Feb-06   | 25.11                | 451.17      | 451.30          | 451.76                                 | 451.49      |
| OS-MW-2    | 471.50                     | 06-Feb-06   | 20.76                | 450.74      | 450.90          | 451.28                                 | 451.04      |

## Definition(s):

- mean sea level msl NM TOC

- not measured

- top of well casing

### Note(s):

- Non-vented well; part of remote sampling system.

IRP Site 2 (Old Base Service Station) Water Quality Parameters Winter 2006 Table 2

Vandenberg AFB, California

| Sampling Location               | 2-MW-1    | 2-MW-3    | 2-MW-5    | 2-MW-7    | 2-MW-8    | 2-MW-9    |
|---------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Sample ID                       | V2MW1     | V2MW3     | V2MW5     | V2MW7     | V2MW8M    | V2MW9     |
| Collection Date                 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 |
| Field Parameters <sup>1</sup> : |           |           |           |           |           |           |
| Temperature (°Celsius)          | 17.10     | 18.51     | 12.56     | 13.90     | 13.82     | 13.23     |
| Conductivity (µmhos/cm)         | 10,291    | 5,750     | 7,273     | 8,695     | 12,037    | 11,163    |
| Hd                              | 5.35      | 6.39      | 6.05      | 5.84      | 4.69      | 5.72      |
| Turbidity (NTUs)                | 25.3      | 2.14      | 1.93      | 1.01      | 0.54      | 3.60      |
| Sampling Location               | 2-MW-10   | 2-MW-11   | 2-MW-12   | OS-MW-1   | OS-MW-2   |           |
| Sample ID                       | V2MW10F   | V2MW11F   | V2MW12F   | VOSMW1    | VOSMW2    |           |
| Collection Date                 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 |           |
| Field Parameters <sup>1</sup> : |           |           |           |           |           |           |
| Temperature (°Celsius)          | 18.78     | 17.80     | 19.28     | 19.19     | 19.22     |           |
| Conductivity (µmhos/cm)         | 060,6     | 11,390    | 7,959     | 7,760     | 841       |           |
| $^{ m Hd}$                      | 5.78      | 6.04      | 7.42      | 5.84      | 7.08      |           |
| Turbidity (NTUs)                | 41.6      | 3.39      | 6.55      | 12.8      | 4.75      |           |

## Definition(s):

- micromhos per centimeter µmhos/cm NTU

- nephelometric turbidity unit

### Note(s):

- field parameters measured immediately prior to sampling.

<S2\_T3\_Win06\_Mets.xls> 5/30/2006

Metals in Groundwater
Winter 2006
EPA Method SW6010B (µg/L)
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

Table 3

| Sample Location        |           |           |         |         | 2-MW-1      | 2-MW-1        | 2-MW-3      | 2-MW-5      | 2-MW-7      |
|------------------------|-----------|-----------|---------|---------|-------------|---------------|-------------|-------------|-------------|
| Sample ID              |           |           |         |         | V2MW1F      | V99W603F (D)  | V2MW3F      | V2MW5F      | V2MW7F      |
| Collection Date        |           |           |         |         | 06-Feb-06   | 06-Feb-06     | 06-Feb-06   | 06-Feb-06   | 06-Feb-06   |
|                        |           |           | Primary |         |             |               |             |             |             |
| Dissolved Metals       | $MDL^{1}$ | $PQL^{1}$ | MCL     | BTV     |             |               |             |             |             |
| Aluminum               | 15        | 09        | 1,000   | 1,200   | 382 €       | g 413 g       | g U 09      | g U 09      | 652 g       |
| $Antimony^2$           | 40        | 100       | 9       | 10      | 40 U §      | g 40 U g      | 40 U g      | 40 U g      | 40 U g      |
| Arsenic                | 4         | 10        | 10      | 7       | 5 U §       | g S U g       | 5 U g       | 5 U g       | 5 U g       |
| Barium                 |           | 5         | 1,000   | 276     | 30 8        | g 32.1 g      | 91.6 g      | 210 g       | 152 g       |
| Beryllium <sup>2</sup> | _         | 5         | 4       | 0.3     | 1 U g       | g 1 U g       | 1  U g      | 1 U g       | 1.62 J q    |
| Cadmium                | -         | 5         | 5       | 5       | 11.8        | g 10.3 g      | 2 U g       | 3.74 J g    | 7.93 g      |
| Calcium                | 22        | 200       | N/A     | 197,000 | 152,000 €   | g 165,000 g   | 120,000 g   | 170,000 g   | 165,000 g   |
| Chromium               | П         | 10        | 20      | 20      |             | g 20 g        | 5 U g       | 5 U g       | 5 U g       |
| Cobalt                 | 7         | 15        | N/A     | 13      | 13.7 J      | q 19.1 g      | 5 U g       | 5 U g       | 6.22 J q    |
| Copper                 | 1         | 10        | 1,300   | 28      | n           | g 5 U g       | 5 U g       | 5 U g       | 5.79 J q    |
| Iron                   | 4         | 100       | N/A     | 3,530   | 69.9 J      | q 53.4 J q    | 855 g       | 44.2 J q    | 40 U g      |
| Lead                   | 7         | 3         | 15      | ю       | 2 U §       | g 2 U g       | 2 U g       | 2 U g       | 2 U g       |
| Magnesium              | 56        | 200       | N/A     | 119,000 | 283,000 €   | g 308,000 g   | 152,000 g   | 248,000 g   | 257,000 g   |
| Manganese              | 1         | 2         | N/A     | 971     |             | g 212 g       | 380 g       | 12.5 g      | 43.8 g      |
| Molybdenum             | 2         | 15        | N/A     | 12      | 13.8 J      | q 10 U g      | 15.4 g      | 13.8 J g    |             |
| Nickel                 | 5         | 20        | 100     | 490     |             | g 210 g       | 211 g       | 100 g       | 106 g       |
| Potassium              | 41        | 1,000     | N/A     | 13,300  | 10,700 g    | g 12,100 g    | 12,000 g    | 14,500 g    | 16,300 g    |
| Selenium <sup>2</sup>  | 5         | 10        | 50      | С       | 39.5        | g 41.7 g      | 5 U g       | 21.2 g      | 33 g        |
| Silver <sup>2</sup>    | 1         | 10        | N/A     | 0.2     | 5 U g       | s 5 U g       | 5 U g       | 5 U g       | 5 U g       |
| Sodium                 | 23        | 200       | N/A     | 420,000 | 2,230,000 g | g 2,370,000 g | 1,080,000 g | 1,530,000 g | 1,740,000 g |
| Thallium <sup>2</sup>  | 5         | 10        | 2       | _       | 5 U §       | g 2 U g       | 5 U g       | 5 U g       | 5 U g       |
| Vanadium               | 1         | 10        | N/A     | 28      | 5 U §       | g 2 U g       | 5 U g       | 5 U g       | 5 U g       |
| Zinc                   | 2         | 20        | N/A     | 80      | 7.36 J c    | q 5.37 J q    | 21.2 g      | 12.9 J q    | 112 g       |
|                        |           |           |         |         |             |               |             |             |             |

Table 3
Metals in Groundwater
Winter 2006
EPA Method SW6010B (µg/L)
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

| Sample ID           Collection Date         Primary           Dissolved Metals         MDL <sup>1</sup> PQL <sup>1</sup> MCL           Aluminum         15         60         1,000           Antimony <sup>2</sup> 40         100         6           Arsenic         4         10         10           Barium         1         5         1,000           Beryllium <sup>2</sup> 1         5         4           Cadenium         1         5         5           Calcium         22         500         N/A           Chromium         1         10         50           Cobalt         2         15         N/A           Lead         2         3         15           Marnesium         2         3         15           Marnesium         2         3         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ry BTV 1,200 1,200 7 7 0.3 5 5 197,000 20 20 13 | V2MW8F 06-Feb-06 5,750 g 40 U g 5 U g 129 g 7.86 g 35 g 195,000 g 43.9 g 43.9 g | V2MW9F 06-Feb-06 60 U g 40 U g 5.55 J q 199 g 1 U g 84.8 g 212,000 g 5 U g | V2MW10F<br>06-Feb-06<br>74.7 J q<br>40 U g<br>5.93 J q<br>73.8 g<br>1 U g<br>132,000 g<br>5 U g | V2MW11F 06-Feb-06 60 U g 40 U g 5 U g 7 U g 5 U g 5 U g 7 S 7 S 8 S 8 S 9 S | V2MW12F<br>06-Feb-06<br>60 U g<br>40 U g<br>235 g |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|
| ed Metals MDL PQL Unm 15 60  my² 40 100  mm² 1 5  mm 22 500  um 22 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | n n                                                                             | 1 n n n n n n n n n n n n n n n n n n n                                    | о- <b>da</b>                                                                                    | 90-da                                                                       | 06-Feb-06  60 U g  40 U g  9.28 J q  235          |
| ed Metals MDL <sup>1</sup> PQL <sup>1</sup> um 15 60  my <sup>2</sup> 40 100  1 5  um <sup>2</sup> 1 5  um 1 5  um 1 5  um 1 10  um 22 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                               | חחחח                                                                            |                                                                            | r n n                                                                                           |                                                                             | 60 U g<br>40 U g<br>928 J q<br>235                |
| um 15 60  iny <sup>2</sup> 40 100  ima <sup>2</sup> 1 5  ima 1 5  um 1 10  um 1 10  um 22 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                               | חחח                                                                             | n n                                                                        | r D D                                                                                           |                                                                             | n<br>n                                            |
| mm <sup>2</sup> 40 100  mm <sup>2</sup> 1 5  mm 1 5  mm 1 5  a 22 500  um 1 10  4 100  2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | חח                                                                              | n n                                                                        | n n                                                                                             |                                                                             | n                                                 |
| mm <sup>2</sup> 1 5<br>mm 1 5<br>m 22 500<br>um 22 500<br>um 1 10<br>2 15<br>1 10<br>4 100<br>2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                               | n n                                                                             | i D                                                                        | r D                                                                                             | D D                                                                         | · - ;                                             |
| mn 1 5 mm 2 1 5 mm 1 5 mm 1 5 mm 1 5 mm 1 10 mm 1 10 mm 1 10 mm 2 15 mm 2 15 mm 2 15 mm 2 5 2 3 mm 2 5 mm 2 | 7                                               | D                                                                               | D DD                                                                       | D D                                                                                             | Þ                                                                           | F                                                 |
| um 1 5  a 22 500  um 1 10  2 15  1 10  2 15  1 10  2 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                               | n                                                                               | D D                                                                        | D D                                                                                             | Þ                                                                           | H +                                               |
| m 1 5 a 22 500 um 1 10 2 15 1 10 4 100 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>-</b>                                        | ח                                                                               | D D                                                                        | D                                                                                               |                                                                             | ื่<br>Д                                           |
| a 22 500 um 1 10 2 15 1 10 4 100 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                               | Ω                                                                               | n n                                                                        | Þ                                                                                               |                                                                             | 2 U g                                             |
| um 1 10 2 15 15 10 4 100 26 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | D                                                                               | חח                                                                         | D                                                                                               |                                                                             | 181,000 g                                         |
| 2 15<br>1 10<br>4 100<br>2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                                                 | $\Gamma$                                                                   |                                                                                                 | 5 U g                                                                       | $\Box$                                            |
| 1 10<br>4 100<br>2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                                                 |                                                                            | J. 1. 1. 0                                                                                      | 5 U g                                                                       | 7.57 J g                                          |
| 4 100<br>2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                                                 | 9.28 J q                                                                   | 5 U g                                                                                           | 5 U g                                                                       | 5 U g                                             |
| 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 145 g                                                                           | 40 U g                                                                     | 288 g                                                                                           | 40 U g                                                                      | 359 g                                             |
| 000 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | 2 U g                                                                           | 2 U g                                                                      | 2 U g                                                                                           | 2 U g                                                                       | 2 U g                                             |
| 007 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                                                                 | 350,000 g                                                                  | 267,000 g                                                                                       | 354,000 g                                                                   | 206,000 g                                         |
| 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                 | 28.2 g                                                                     | 331 g                                                                                           |                                                                             | 153 g                                             |
| m 2 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                                                                 | 18,4 g                                                                     | 43 g                                                                                            | 21.5 g                                                                      | 18.4 g                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                 | 229 g                                                                      | 141 g                                                                                           |                                                                             |                                                   |
| Potassium 41 1,000 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13,300                                          | 13,900 g                                                                        | 17,600 g                                                                   | 13,900 g                                                                                        | 16,800 g                                                                    | 10,400 g                                          |
| $Selenium^2 \qquad \qquad 5 \qquad 10 \qquad 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                               | 38.1 g                                                                          | 46.8 g                                                                     | 7.46 J q                                                                                        | 41.9 g                                                                      | 5 U g                                             |
| $Silver^2$ 1 10 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                             | 5 U g                                                                           | 5 U g                                                                      | 5 U g                                                                                           | 5 U g                                                                       | 5 U g                                             |
| Sodium 23 500 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 420,000                                         |                                                                                 | 2,430,000 g                                                                | 2,000,000 g                                                                                     | 2,410,000 g                                                                 | 1,610,000 g                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 5 U g                                                                           | 5 U g                                                                      | 5 U g                                                                                           | 5 Ug                                                                        | 5 U g                                             |
| Vanadium 1 10 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 5 U g                                                                           | 5 U g                                                                      | 5 U g                                                                                           | 5 U g                                                                       | 5 U g                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 58.8 g                                                                          | 38 g                                                                       | 22.5 g                                                                                          | 8.18 J q                                                                    | 5 U g                                             |

Table 3
Metals in Groundwater
Winter 2006
EPA Method SW6010B (µg/L)
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

| Sample Location        |             |           |         |                | OS-MW-1     | OS-MW-2     | OS-MW-2      |
|------------------------|-------------|-----------|---------|----------------|-------------|-------------|--------------|
| Sample ID              |             |           |         |                | VOSMW1F     | VOSMW2F     | V99W604F (D) |
| Collection Date        |             |           |         |                | 06-Feb-06   | 06-Feb-06   | 06-Feb-06    |
|                        |             |           | Primary |                |             |             |              |
| Dissolved Metals       | $MDL^{1}$   | $PQL^{1}$ | MCL     | $\mathbf{BTV}$ |             |             |              |
| Aluminum               | 15          | 09        | 1,000   | 1,200          | g U 09      | g U 09      | 8 A 09       |
| $Antimony^2$           | 40          | 100       | 9       | 10             | 40 U g      | 40 U g      | 40 U g       |
| Arsenic                | 4           | 10        | 10      | 7              | 6.57 J q    | 5 U g       | 5.32 J q     |
| Barium                 | П           | 5         | 1,000   | 276            | 149 g       | 185 g       | 190 g        |
| Beryllium <sup>2</sup> | -           | 5         | 4       | 0.3            | 1 U g       | 1 U g       | 1 U g        |
| Cadmium                | -           | 5         | 5       | 5              | 52.3 g      | 3.16 J q    | 3.39 J q     |
| Calcium                | 22          | 200       | N/A     | 197,000        | 150,000 g   | 130,000 g   | 135,000 g    |
| Chromium               | -           | 10        | 20      | 20             | 5.1 J q     | 5 U g       | 5 U g        |
| Cobalt                 | 2           | 15        | N/A     | 13             | 5.02 J q    | 5 U g       | 5 U g        |
| Copper                 | -           | 10        | 1,300   | 28             | 5 U g       | 5 U g       | 5 U g        |
| Iron                   | 4           | 100       | N/A     | 3,530          | 327 g       | 461 g       | 409 g        |
| Lead                   | 7           | 3         | 15      | 3              | 2 U g       | g U Z .     | 2 U g        |
| Magnesium              | 26          | 200       | N/A     | 119,000        | 244,000 g   | 188,000 g   | 192,000 g    |
| Manganese              | _           | 5         | N/A     | 971            | 38 g        | 113 g       | 136 g        |
| Molybdenum             | 2           | 15        | N/A     | 12             | 35.3 g      | 12.3 J q    | 10 U g       |
| Nickel                 | 5           | 20        | 100     | 490            | 212 g       | 38.4 g      | 31.2 g       |
| Potassium              | 41          | 1,000     | N/A     | 13,300         | 12,300 g    | 12,800 g    | 13,200 g     |
| Selenium <sup>2</sup>  | S           | 10        | 50      | 3              | 6.99 J q    | 9.2 J q     | F.T.4 99     |
| Silver <sup>2</sup>    | <del></del> | 10        | N/A     | 0.2            | 5 U g       | 5 U g       | 5 U g        |
| Sodium                 | 23          | 200       | N/A     | 420,000        | 1,530,000 g | 1,270,000 g | 1,290,000 g  |
| $Thallium^2$           | 5           | 10        | 2       | 1              | 5 U g       | 5 U g       | 5 U g        |
| Vanadium               | _           | 10        | N/A     | 28             | 5 U g       | 5 U g       | 5 U g        |
| Zinc                   | 2           | 20        | N/A     | 80             | 32.1 g      | 5.21 J q    | 6.81 J q     |
|                        |             |           |         |                |             |             |              |

# Table 3 Metals in Groundwater Winter 2006 EPA Method SW6010B (µg/L) IRP Site 2 (Old Base Service Station) Vandenberg AFB, California

## Data Validity Qualifier(s):

- The analyte was positively identified and the result is usable; however, the analyte concentration is an estimated value.
- The analyte was not detected at or above the MDL.

## Data Validity Comment(s):

- The data met prescribed criteria as detailed in the QAPP.
- The analyte detection was below the PQL.

### Definition(s):

- BTV background threshold value
- MCL maximum contaminant level
- MDL method detection limit
  - μg/L micrograms per liter
    - N/A not applicable
- PQL practical quantitation limit
- QAPP Quality Assurance Project Plan

### Note(s):

Bold type indicates results that were above the MCL.

Shading indicates results that were above the 95th percentile BTV.

- Values from QAPP Addendum (Tetra Tech 2004a).
- The BTV was less than the detection limit for this metal.

IRP Site 2 (Old Base Service Station) EPA Method SW8260B (μg/L) Vandenberg AFB, California VOCs in Groundwater **Winter 2006** 

| Sample Location           |           |                  |                | 2-MW-7    | 2-MW-8    | 2-MW-9    | OS-MW-1   | OS-MW-2   | OS-MW-2     |
|---------------------------|-----------|------------------|----------------|-----------|-----------|-----------|-----------|-----------|-------------|
| Sample ID                 |           |                  |                | V2MW7     | V2MW8M    | V2MW9     | VOSMW1    | VOSMW2    | V99W604 (D) |
| Collection Date           |           |                  |                | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06 | 06-Feb-06   |
|                           | $MDL^{1}$ | PQL <sup>1</sup> | Primary<br>MCL |           |           |           |           |           |             |
| 1,2-DCA                   | 90.0      | 1.0              | 0.5            | 0.2 U g   | 0.2 U g   | 0.2 U g   | 0.46 J q  |           | 0.2 U g     |
| Benzene                   | 0.07      | 0.4              |                | 1.7 g     | g 29      | 0.2 U g   | 0.2 U g   | Ω         | 0.2 U g     |
| DIPE                      | 0.16      | 5.0              | N/A            | 0.2 U g   | 0.2 U g   | 0.2 U g   | 1.3 J q   | D         | 0.2 U g     |
| Ethylbenzene              | 0.12      | 1.0              | 300            | 2.2 g     | 56 g      | 0.2 U g   | 0.2 U g   | 0.2 U g   | 0.2 U g     |
| m,p-Xylenes               | 0.25      | 2.0              | $1,750^{2}$    | 30 g      | 290 g     | 0.5 U g   | 0.5 U g   |           | 0.5 U g     |
| o-Xylene                  | 0.13      | 1.0              | $1,750^{2}$    | 11 g      | 71 g      | 0.2 U g   | 0.2 U g   | 0.2 U g   | 0.2 U g     |
| Toluene                   | 0.11      | 1.0              | 150            | 0.8 J q   | 21 g      | 0.2 U g   | 0.2 U g   | 0.2 U g   | 0.2 U g     |
| TCE                       | 0.18      | 1.0              | 5              | 0.36 J q  | 0.2 U g   | 0.2 U g   | n         |           | n           |
| All other target analytes | N/A       | N/A              | N/A            | ND        | ND        | ND        | ND        | ND        | ND          |

## Data Validity Qualifier(s):

- The analyte was positively identified and the result is usable; however, the analyte concentration is an estimated value.
  - The analyte was not detected at or above the MDL.

## Data Validity Comment(s):

- The data met prescribed criteria as detailed in the QAPP.
- The analyte detection was below the PQL.

### Definition(s):

- duplicate sample (D) DCA DIPE MCL MDL μg/L N/A
  - dichloroethane
- diisopropyl ether
- maximum contaminant level
- method detection limit
- micrograms per liter
- not applicable
- not detected; result is less than the MDL. practical quantitation limit
  - Quality Assurance Project Plan PQL QAPP TCE
    - trichloroethene

### Note(s):

Bold type indicates results that were above the MCL.

- Values from QAPP Addendum (Tetra Tech 2004a). MCL of 1,750 µg/L applies to sum of m-xylene, o-xylene, and p-xylene.

## TPH as Gasoline, SVOCs, and PAHs in Groundwater Winter 2006

EPA Methods SW8015B, SW8270C, and SW8270C SIM IRP Site 2 (Old Base Service Station) Vandenberg AFB, California

|                             |             |            |                  | TPH as gasoline |                     |              | -                |             |                  |
|-----------------------------|-------------|------------|------------------|-----------------|---------------------|--------------|------------------|-------------|------------------|
|                             |             |            |                  | (mg/L)          |                     | SVOCs (µg/L) |                  | PAHS        | PAHs (µg/L)      |
| Sample                      |             | Collection |                  |                 |                     |              | All Other Target |             | All Other Target |
| Location                    | Sample ID   | Date       |                  |                 | 2-Methylnaphthalene | Naphthalene  | Analytes         | Naphthalene | Analytes         |
|                             |             |            | MDL <sup>1</sup> | 0.02            | 1.8                 | 1.6          | N/A              | 0.024       | N/A              |
|                             |             |            | PQL <sup>1</sup> | 0.1             | 10                  | 10           | N/A              | 1.0         | N/A              |
| 2-MW-1                      | V2MW1       | 06-Feb-06  |                  | NA              | 4.8 U g             | 4.8 U g      | ND               | NA          | NA               |
| 2-MW-1                      | V99W603 (D) | 06-Feb-06  |                  | NA              | 4.7 U g             | 4.7 U g      | ND               | NA          | NA               |
| 2-MW-3                      | V2MW3       | 06-Feb-06  |                  | NA              | 4.7 U g             | 4.7 U g      | N                | NA          | NA               |
| 2-MW-5                      | V2MW5       | 06-Feb-06  |                  | NA              | 4.7 U g             | 4.7 U g      | ND               | NA          | NA               |
| 2-MW-7                      | V2MW7       | 06-Feb-06  |                  | 0.29 g          | 4.9 U g             | 4.9 U g      | ND               | NA          | NA               |
| 2-MW-8                      | V2MW8M      | 06-Feb-06  |                  | 2.8 g           | 27 g                | 23 g         | ND               | 21 g        | ND               |
| 2-MW-9                      | V2MW9       | 06-Feb-06  |                  | 0.02 U g        | 4.8 U g             | 4.8 U g      | ND               | NA          | NA               |
| OS-MW-1                     | VOSMW1      | 06-Feb-06  |                  | 0.02 U g        | 4.7 U g             | 4.7 U g      | ND               | NA          | NA               |
| OS-MW-2                     | VOSMW2      | 06-Feb-06  |                  | 0.02 U g        | 4.7 U g             | 4.7 U g      | ND               | 0.2 UJ b    | ND               |
| OS-MW-2                     | V99W604 (D) | 06-Feb-06  |                  | 0.02 U g        | 4.9 U g             | 4.9 U g      | ND               | 0.19 UJ b   | ND               |
| Data Validity Onelifier(s): | liffor(s).  |            |                  |                 |                     |              |                  |             |                  |

## Data Validity Qualifier(s):

- The analyte was not detected at or above the MDL.

- The analyte was not detected above the MDL; however, the MDL is uncertain and may be elevated above normal levels.

## Data Validity Comment(s):

- The surrogate spike recovery was outside quality control criteria.

- The data met prescribed criteria as detailed in the QAPP.

### g Definition(s):

- duplicate sample

method detection limit

- micrograms per liter - milligrams per liter

- not applicable

not analyzed

- Not detected; result is less than the MCL.

- polynuclear aromatic hydrocarbon

- practical quantitation limit

Quality Assurance Project Plan (D)
MDL
mg/L
ng/L
N/A
NA
ND
ND
PAH
PQL
QAPP
SIM

selected ion monitoring

semivolatile organic compound SVOC

- total petroleum hydrocarbons

- Values from QAPP Addendum (Tetra Tech 2004a).

The California Department of Health Services notification level for naphthalene is 17 µg/L.

Table 6
Summary of BGMP Key Contaminants of Concern IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|                                                                                  | Spr-01       | Cum 01   | E. 11. 01 | Win-02i | Snr-02 | Sum-02        | 10°11   |            | 00     |
|----------------------------------------------------------------------------------|--------------|----------|-----------|---------|--------|---------------|---------|------------|--------|
| ND ND ND 0.0465 ND ND 0.0675 ND ND ND 0.0445 ND | ND           | Daill-01 | rall-vi   |         | ~o_rda | 70-IIIno      | Fall-02 | Win-03     | Spr-03 |
| 0.0465 ND ND<br>0.0675 ND ND<br>0.0445 ND ND<br>ND ND ND                         |              | ND       | ND        | NA      | NA     | NA            | NA      | NA         | NA     |
| 0.0675 ND ND 0.0445 ND                       | NO           | R        | R         | R       | R      | N<br>N        | NA      | R          | NA     |
| 0.0445 ND ND ND ND ND ND                                                         | N<br>ON      | Q        | QN        | R       | NA     | N<br>N        | NA      | R          | NA     |
| ON ON ON                                                                         | N<br>ON      | QN       | N         | N<br>N  | NA     | N<br>N        | NA      | NA         | NA     |
|                                                                                  | N<br>ON      | QN       | N         | ND      | NA     | 69.0          | NA      | R          | NA     |
| 3.5 4.4                                                                          | NA           | 5.1      | 5.3       | 36      | 7.7    | 23            | 18      | 79         | 32.5   |
| 0.0485 ND ND                                                                     | S            | Q        | N         | R       | NA     | N             | NA      | N          | NA     |
| 0 0.0472 ND ND                                                                   | N<br>ON      | QN       | ND        | ND      | NA     | ND            | NA      | ND<br>ND   | NA     |
| NA                                                                               | N<br>ON      | R        | N         | ND      | R      | ND            | NA      | NA         | NA     |
| NA                                                                               | N<br>ON      | R        | QN        | QN<br>N | R      | QN            | NA      | NA         | NA     |
| ND ON                                                                            | N<br>ON      | ON.      | N<br>N    | ND      | S      | N             | N<br>N  | QN<br>N    | R      |
| NA                                                                               | ND           | ND       | ND        | ND      | NA     | ND            | NA      | ND         | NA     |
|                                                                                  |              |          |           |         |        |               |         |            |        |
| 4                                                                                | Spr-04       | Sum-04   | Fall-04   | Win-05  | Spr-05 | <b>Sum-05</b> | Fall-05 | Win-06     |        |
|                                                                                  | NA           | NA       | NA        | NA      | NA     | NA            | NA      | NA         |        |
| NA ND                                                                            | NA           | N<br>Q   | NA        | NA      | NA     | N             | NA      | NA         |        |
| ND NA ND                                                                         | NA           | R        | NA        | NA      | NA     | NA            | NA      | NA         |        |
| NA NA NA                                                                         | NA           | NA       | NA        | NA      | NA     | NA            | NA      | NA         |        |
|                                                                                  | NA           | 0.45     | NA        | NA      | NA     | 1.5           | NA      | 1.7        |        |
| 33 33.8                                                                          | 22           | 21       | 39        | 27      | 36     | 37            | 35      | <i>L</i> 9 |        |
| NA ND                                                                            | NA           | ND       | NA        | NA      | NA     | N             | NA      | R          |        |
| ND                                                                               | NA           | N<br>Q   | NA        | NA      | NA     | NA            | NA      | NA         |        |
| NA                                                                               | QZ<br>Q      | NA       | NA        | NA      | NA     | NA            | NA      | NA         |        |
| NA                                                                               | <del>N</del> | NA       | NA        | NA      | NA     | NA            | NA      | NA         |        |
| ND                                                                               | S            | QN       | R         | N<br>N  | NA     | N<br>N        | NA      | R          |        |
| OS-MW-2 ND NA ND NA                                                              | NA           | QN       | NA        | NA      | NA     | ND            | NA      | PA<br>PA   |        |

Table 6
Summary of BGMP Key Contaminants of Concern IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

| Dec-99         Fall-00         Win-01         Spr-01         Sum-01         Fall-01           ND         ND         ND         ND         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         NA         NA           NA         NA         NA         NA         NA         NA           NA         NA         NA                           |          | 1 oluene (µg/L) | L) <u>*</u>  |        |          |         |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|--------------|--------|----------|---------|--------|--------|
| ND         ND         ND         ND         ND           NA         NA         NA         NA         NA                                                                       | Spr-01   | Fall-01         | $Win-02^{i}$ | Spr-02 | Sum-02   | Fall-02 | Win-03 | Spr-03 |
| ND         ND         ND         ND         ND           ND         ND         0.59         ND         ND           ND         ND         0.53         ND         ND           NA         NA         NA         ND         ND           NA         NA         NA         ND         ND           NA         NA         NA         ND         ND           NA         NA         ND         ND         ND           NA         NA         NA         ND         ND           NA         NA         NA         NA         NA                                                                   | QN       | ND<br>ND        | NA           | NA     | NA       | NA      | NA     | NA     |
| ND         ND         ND         ND         ND           NA         NA         NA         ND         ND           NA         NA         NA         ND         ND           NA         NA         NA         NA         NA                                                                       | QN       | N<br>ON         | N            | N      | ND<br>ND | NA      | R      | NA     |
| ND         ND         ND         ND         ND           ND         ND         0.64         ND         ND           2.06         5.3         11         NA         11         6.4           ND         ND         ND         0.69         ND         ND         ND           ND         ND         ND         0.53         ND         ND         ND         ND           NA         NA         NA         NA         ND         ND         ND         ND           NA         NA         NA         NA         ND         ND         ND         ND           Sum-03         Fall-03         Win-04         Spr-04         Sum-04         Fall-04           NA         NA         NA         ND         ND         ND           NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA         NA          | QN       | ON              | N            | NA     | ND<br>ND | NA      | N      | NA     |
| ND         ND         ND         0.64         ND         ND           2.06         5.3         11         NA         11         6.4           ND         ND         ND         0.59         ND         ND           ND         ND         ND         ND         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA                         | ND       | N               | QN           | NA     | ND       | NA      | NA     | NA     |
| 2.06 5.3 11 NA 11 6.4  ND ND ND 0.59 ND ND ND  NA NA NA ND ND ND ND ND  ND ND ND ND ND ND ND  ND ND ND ND ND ND ND  NA NA NA ND ND ND ND  NA NA NA NA NA NA NA NA  NA NA NA NA NA NA NA NA  0.17 NA NA NA NA NA NA NA  0.17 NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA NA  ND NA NA NA NA NA NA NA NA NA  ND NA  ND NA                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.64     | N               | QN           | NA     | 2.2      | NA      | 1.2    | NA     |
| ND         ND         ND         0.59         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         NA         NA         NA           ND         NA         NA         NA                                        | NA       | 6.4             | 64           | 12     | 35       | 23      | 37     | 22.7   |
| ND         ND         ND         0.53         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         ND         ND           Sum-03         Fall-03         Win-04         Spr-04         Sum-04         Fall-04           NA         NA         NA         NA         NA           ND         NA         NA         NA         NA           ND         NA         NA         NA         NA           ND         NA         NA         NA         NA           NA         NA         NA         NA         NA           ND         NA         NA         NA         NA                                             | 0.59     | QX              | N            | NA     | ND       | NA      | N<br>N | NA     |
| NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         ND         ND           NA         NA         NA         ND         ND         ND           Sum-03         Fall-03         Win-04         Spr-04         Sum-04         Fall-04           NA         NA         NA         NA         NA           ND         NA         NA         NA         NA           NA         NA         NA         NA         NA           ND         NA         NA         NA           NA         NA                                             | 0.53     | N<br>ON         | QN           | NA     | ND       | NA      | R      | NA     |
| Sum-03 Fall-03 Win-04 Spr-04 Sum-04 Fall-04  NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND       | QX              | QN           | R      | ND<br>ND | NA      | NA     | NA     |
| 1.1         ND         ND         ND         ND         ND           2         NA         NA         NA         ND         ND         ND           2         NA         NA         NA         ND         ND         ND         ND           Sum-03         Fall-03         Win-04         Spr-04         Sum-04         Fall-04         ND           NA         NA         NA         NA         NA         NA         NA           ND         NA         NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA         NA         NA         NA           ND         NA         NA         NA         NA         NA         NA | QN<br>ON | QX              | N            | R      | N<br>N   | NA      | NA     | NA     |
| 2         NA         NA         ND         ND         ND           Sum-03         Fall-03         Win-04         Spr-04         Sum-04         Fall-04           NA         NA         NA         NA         NA           ND         NA         NA         NA         NA           NA         NA         NA         NA         NA           ND         NA         NA         NA         NA           NA         NA         NA         NA         NA           NA         NA         NA         NA         NA           NA         NA         NA                                              | N ON     | QN<br>ON        | N            | R      | ND<br>ND | R       | R      | R      |
| Sum-03         Fall-03         Win-04         Spr-04         Sum-04         Fall-04           NA         NA         NA         NA         NA           ND         NA         NA         NA         NA           0.44         NA         NA         NA         NA           NA         NA         NA         NA         NA           0.17         NA         NA         NA         NA           12.1         24.1         9.98         6.7         5.5         8.9           ND         NA         ND         NA         NA         NA           ND         NA         ND         NA         NA           ND         NA         NA         NA         NA           NA                                           | ND       | ND              | ND           | NA     | ND       | NA      | ND     | NA     |
| Sum-03         Fall-03         Win-04         Spr-04         Sum-04         Fall-04           NA         NA         NA         NA         NA           ND         NA         NA         NA         NA           0.17         NA         NA         NA         NA           12.1         24.1         9.98         6.7         5.5         8.9           ND         NA         ND         NA         NA           ND         NA         ND         NA         NA           ND         NA         ND         NA         NA           ND         NA         NA         NA         NA           NA         NA         NA         NA         NA                                                                                                                              |          |                 |              |        |          |         |        |        |
| NA ND NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spr-04   | Fall-04         | Win-05       | Spr-05 | Sum-05   | Fall-05 | Win-06 |        |
| ND         NA         ND         NA         ND         NA           0.44         NA         ND         NA         ND         NA           NA         NA         NA         NA         NA         NA           0.17         NA         ND         NA         NA         NA           12.1         24.1         9.98         6.7         5.5         8.9           ND         NA         ND         NA         NA         NA           ND         NA         ND         NA         NA           ND         NA         NA         NA         NA           ND         NA         NA         NA         NA           ND         NA         NA         NA         NA           NA         NA         NA         NA         NA                                                                                                                                                                                                                                                                                                                                              | NA       | NA              | NA           | NA     | NA       | NA      | NA     |        |
| 0.44 NA ND NA ND NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA       | NA              | NA           | NA     | R        | NA      | NA     |        |
| NA         NA         NA         NA         NA           0.17         NA         ND         NA         NA         NA           12.1         24.1         9.98         6.7         5.5         8.9           ND         NA         ND         NA         NA         NA           ND         NA         ND         NA         NA         NA           ND         NA         NA         NA         NA         NA           ND         NA         NA         NA         NA         NA           ND         NA         NA         NA         NA         NA           NA         NA         NA         NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA       | NA              | NA           | NA     | NA       | NA      | NA     |        |
| 0.17 NA ND NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA       | NA              | NA           | NA     | NA       | NA      | NA     |        |
| 12.1 24.1 9.98 6.7 5.5 8.9  ND NA ND NA ND NA ND NA  ND NA ND NA ND NA NA  ND NA NA ND NA NA  NA ND NA NA NA NA  NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA              | NA           | NA     | 0.74     | NA      | 8.0    |        |
| ND         NA         ND         NA         ND         NA           1         ND         NA         NA         NA         NA           1         ND         NA         NA         NA         NA           2         ND         NA         NA         NA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.7      | 8.9             | 11           | 8.7    | 7.7      | 7.5     | 21     |        |
| ND NA ND NA ND NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA       | NA              | NA           | NA     | R        | NA      | R      |        |
| ND NA ND NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA       | NA              | NA           | NA     | NA       | NA      | NA     |        |
| ND NA ND NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QN       | NA              | NA           | NA     | NA       | NA      | NA     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND       | NA              | NA           | NA     | NA       | NA      | NA     |        |
| ON ON ON ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | N<br>ON         | R            | NA     | N<br>N   | NA      | R      |        |
| ND NA ND NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA       | NA              | NA           | NA     | ND       | NA      | ND     |        |

<S2\_T6\_Win06\_COCs.xls> 5/30/2006

Table 6
Summary of BGMP Key Contaminants of Concern
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |         |        |        | Ethy     | Ethylbenzene $(\mu \mathrm{g/L})^a$ | ug/L) <sup>a</sup> |        |               |         |          |        |
|---------|---------|---------|--------|--------|----------|-------------------------------------|--------------------|--------|---------------|---------|----------|--------|
|         | Dec-99  | Fall-00 | Win-01 | Spr-01 | Sum-01   | Fall-01                             | Win-02i            | Spr-02 | Sum-02        | Fall-02 | Win-03   | Spr-03 |
| 2-MW-1  | ND      | ND      | ND     | ND     | ND<br>ND | ND                                  | NA                 | NA     | NA            | NA      | NA       | NA     |
| 2-MW-3  | R       | N<br>N  | R      | QN     | ND       | ND                                  | N<br>N             | QN     | N<br>N        | NA      | R        | NA     |
| 2-MW-5  | R       | N<br>N  | R      | ON.    | R        | ND<br>ND                            | N<br>N             | NA     | NO            | NA      | R        | NA     |
| 2-MW-6  | R       | R       | R      | R      | R        | ND<br>ND                            | NO                 | NA     | N             | NA      | NA       | NA     |
| 2-MW-7  | QN<br>N | R       | N<br>N | ON.    | ND       | ND                                  | N                  | NA     | 2.4           | NA      | 1.7      | NA     |
| 2-MW-8  | 1.38    | 5.2     | 10     | NA     | 8.7      | 4.9                                 | 62                 | 12     | 37            | 31      | 36       | 34.7   |
| 2-MW-9  | R       | R       | N<br>N | N      | R        | ND                                  | N<br>N             | NA     | QN            | NA      | N<br>N   | NA     |
| 2-MW-10 | R       | N<br>N  | R      | QN     | R        | QN                                  | ON                 | NA     | N<br>N        | NA      | R        | NA     |
| 2-MW-11 | NA      | NA      | NA     | Q      | R        | R                                   | N<br>N             | ON.    | N<br>N        | NA      | NA       | NA     |
| 2-MW-12 | NA      | NA      | NA     | R      | R        | R                                   | R                  | N<br>N | N<br>N        | NA      | NA       | NA     |
| OS-MW-1 | R       | N       | R      | ON.    | ND       | ND                                  | R                  | N<br>N | N<br>N        | R       | R        | N<br>N |
| OS-MW-2 | NA      | NA      | NA     | ND     | ND       | ND                                  | ND                 | NA     | ND            | NA      | N<br>N   | NA     |
|         |         |         |        |        |          |                                     |                    |        |               |         |          |        |
|         | Sum-03  | Fall-03 | Win-04 | Spr-04 | Sum-04   | Fall-04                             | Win-05             | Spr-05 | <b>Sum-05</b> | Fall-05 | Win-06   |        |
| 2-MW-1  | NA      | NA      | NA     | NA     | NA       | NA                                  | NA                 | NA     | NA            | NA      | NA       |        |
| 2-MW-3  | R       | NA      | R      | NA     | R        | NA                                  | NA                 | NA     | N<br>N        | NA      | NA       |        |
| 2-MW-5  | R       | NA      | 0.20   | NA     | R        | NA                                  | NA                 | NA     | NA            | NA      | NA       |        |
| 2-MW-6  | NA      | NA      | NA     | NA     | NA       | NA                                  | NA                 | NA     | NA            | NA      | NA       |        |
| 2-MW-7  | 0.1     | NA      | 0.14   | NA     | 0.29     | NA                                  | NA                 | NA     | 1.3           | NA      | 2.2      |        |
| 2-MW-8  | 32.3    | 26.9    | 34.1   | 20     | 19       | 34                                  | 39                 | 56     | 22            | 30      | 99       |        |
| 2-MW-9  | N       | NA      | QN     | NA     | R        | NA                                  | NA                 | NA     | R             | NA      | N<br>N   |        |
| 2-MW-10 | N<br>N  | NA      | N      | NA     | N<br>N   | NA                                  | NA                 | NA     | NA            | NA      | NA       |        |
| 2-MW-11 | ON<br>N | NA      | NA     | R      | NA       | NA                                  | NA                 | NA     | NA            | NA      | NA       |        |
| 2-MW-12 | N<br>N  | NA      | NA     | R      | NA       | NA                                  | NA                 | NA     | NA            | NA      | NA       |        |
| OS-MW-1 | N       | ND      | N<br>N | R      | N<br>N   | R                                   | R                  | NA     | R             | NA      | ND<br>ND |        |
| OS-MW-2 | ND      | NA      | ND     | NA     | QN       | NA                                  | NA                 | NA     | ND            | NA      | ND       |        |
|         |         |         |        |        |          |                                     |                    |        |               |         |          |        |

Table 6
Summary of BGMP Key Contaminants of Concern IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |          |        |          | d'm     | m,p-Xylenes (µg/L) <sup>b</sup> | $^{1}g/L)^{b}$ |        |              |         |        |        |
|---------|---------|----------|--------|----------|---------|---------------------------------|----------------|--------|--------------|---------|--------|--------|
|         | Dec-99  | Fall-00  | Win-01 | Spr-01   | Sum-01  | Fall-01                         | Win-02i        | Spr-02 | Sum-02       | Fall-02 | Win-03 | Spr-03 |
| 2-MW-1  | ON      | ND       | ND     | ND       | ND      | ND                              | NA             | NA     | NA           | NA      | NA     | NA     |
| 2-MW-3  | N<br>N  | N<br>N   | N      | R        | R       | ND<br>ND                        | N<br>N         | ND     | N<br>N       | NA      | N      | NA     |
| 2-MW-5  | 0.316   | R        | R      | ND       | ND      | ND                              | N<br>N         | NA     | <del>N</del> | NA      | N<br>N | NA     |
| 2-MW-6  | R       | R        | R      | R        | R       | ND                              | ON             | NA     | R            | NA      | NA     | NA     |
| 2-MW-7  | N       | 4.6      | R      | R        | R       | N                               | ON             | NA     | 22           | NA      | 17     | NA     |
| 2-MW-8  | 6.26    | 53       | 42     | NA       | 37      | 37                              | 250            | 61     | 160          | 72      | 180    | 230    |
| 2-MW-9  | ON      | R        | R      | ND       | R       | ND<br>ND                        | N              | NA     | N<br>ON      | NA      | N<br>N | NA     |
| 2-MW-10 | QN<br>N | R        | R      | N<br>N   | ND      | ND<br>ND                        | N<br>N         | NA     | N<br>N       | NA      | N      | NA     |
| 2-MW-11 | NA      | NA       | NA     | R        | QN<br>Q | R                               | R              | ON.    | <u>N</u>     | NA      | NA     | NA     |
| 2-MW-12 | NA      | NA       | NA     | ND       | ON.     | ND                              | N              | ON.    | <u>N</u>     | NA      | NA     | NA     |
| OS-MW-1 | Q       | ND       | ND     | ND<br>ND | N<br>N  | ND<br>ND                        | N<br>Q         | N      | R            | R       | R      | N      |
| OS-MW-2 | NA      | NA       | NA     | ND       | ND      | ND                              | ON             | NA     | N<br>N       | NA      | R      | NA     |
|         |         |          |        |          |         |                                 |                |        |              |         |        |        |
|         | Sum-03  | Fall-03  | Win-04 | Spr-04   | Sum-04  | Fall-04                         | Win-05         | Spr-05 | Sum-05       | Fall-05 | Win-06 |        |
| 2-MW-1  | NA      | NA       | NA     | NA       | NA      | NA                              | NA             | NA     | NA           | NA      | NA     |        |
| 2-MW-3  | Q.      | NA       | QN     | NA       | R       | NA                              | NA             | NA     | R            | NA      | NA     |        |
| 2-MW-5  | ND      | NA       | N<br>N | NA       | N<br>N  | NA                              | NA             | NA     | NA           | NA      | NA     |        |
| 2-MW-6  | NA      | NA       | NA     | NA       | NA      | NA                              | NA             | NA     | NA           | NA      | NA     |        |
| 2-MW-7  | 7.88    | NA       | 8.08   | NA       | 11      | NA                              | NA             | NA     | 31           | NA      | 30     |        |
| 2-MW-8  | 125     | 227      | 218    | 110      | 06      | 190                             | 240            | 160    | 53           | 160     | 290    |        |
| 2-MW-9  | 0.17    | NA       | N<br>Q | NA       | R       | NA                              | NA             | NA     | R            | NA      | QN     |        |
| 2-MW-10 | R       | NA       | ND     | NA       | Q       | NA                              | NA             | NA     | NA           | NA      | NA     |        |
| 2-MW-11 | R       | NA       | NA     | N        | NA      | NA                              | NA             | NA     | NA           | NA      | NA     |        |
| 2-MW-12 | R       | NA       | NA     | N<br>N   | NA      | NA                              | NA             | NA     | NA           | NA      | NA     |        |
| OS-MW-1 | R       | ND<br>ND | N<br>N | QN       | ON      | ND                              | N<br>N         | NA     | ND           | NA      | N      |        |
| OS-MW-2 | QN      | NA       | ON     | NA       | N<br>N  | NA                              | NA             | NA     | ND           | NA      | ND     |        |

Table 6
Summary of BGMP Key Contaminants of Concern IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |         |          |          | 0-     | 0-Xylene (µg/L) | $(\Gamma)^b$ |          |        |         |          |        |
|---------|---------|---------|----------|----------|--------|-----------------|--------------|----------|--------|---------|----------|--------|
|         | Dec-99  | Fall-00 | Win-01   | Spr-01   | Sum-01 | Fall-01         | Win-02i      | Spr-02   | Sum-02 | Fall-02 | Win-03   | Spr-03 |
| 2-MW-1  | R       | Ð       | ND       | QN       | ON     | ND              | NA           | NA       | NA     | NA      | NA       | NA     |
| 2-MW-3  | R       | N<br>N  | N<br>N   | N<br>N   | N      | R               | N<br>N       | <u>N</u> | QN     | NA      | R        | NA     |
| 2-MW-5  | 0.114   | R       | ND<br>ND | R        | QN     | N<br>N          | QN<br>Q      | NA       | N      | NA      | R        | NA     |
| 2-MW-6  | R       | N<br>N  | ND       | QN<br>N  | ON     | N<br>N          | QN<br>N      | NA       | ON     | NA      | NA       | NA     |
| 2-MW-7  | R       | N       | ND       | QN       | N<br>N | QN<br>N         | 4.9          | NA       | 9.8    | NA      | 6.4      | NA     |
| 2-MW-8  | 2.21    | 9       | 14       | NA       | 12     | 10              | 74           | 21       | 53     | 35      | 52       | 56.2   |
| 2-MW-9  | N       | ND      | ND       | QN       | N<br>N | ND              | ON.          | NA       | ON     | NA      | R        | NA     |
| 2-MW-10 | N       | N<br>N  | ND<br>ND | QN<br>N  | N      | ND              | N<br>N       | NA       | N      | NA      | ND       | NA     |
| 2-MW-11 | NA      | NA      | NA       | ON.      | ON     | ND              | ON.          | QN       | ON.    | NA      | NA       | NA     |
| 2-MW-12 | NA      | NA      | NA       | N<br>N   | ND     | ND              | R            | ND       | N      | NA      | NA       | NA     |
| OS-MW-1 | N<br>N  | N<br>N  | ND       | QN       | N      | ND              | R            | N        | N<br>N | R       | R        | N      |
| OS-MW-2 | NA      | NA      | NA       | ND       | ND     | ND              | ND           | NA       | ND     | NA      | ND       | NA     |
|         |         |         |          |          |        |                 |              |          |        |         |          |        |
|         | Sum-03  | Fall-03 | Win-04   | Spr-04   | Sum-04 | Fall-04         | Win-05       | Spr-05   | Sum-05 | Fall-05 | Win-06   |        |
| 2-MW-1  | NA      | NA      | NA       | NA       | NA     | NA              | NA           | NA       | NA     | NA      | NA       |        |
| 2-MW-3  | QN<br>N | NA      | N<br>N   | NA       | ND     | NA              | NA           | NA       | R      | NA      | NA       |        |
| 2-MW-5  | N<br>N  | NA      | R        | NA       | N      | NA              | NA           | NA       | NA     | NA      | NA       |        |
| 2-MW-6  | NA      | NA      | NA       | NA       | NA     | NA              | NA           | NA       | NA     | NA      | NA       |        |
| 2-MW-7  | 2.59    | NA      | 2.97     | NA       | 4.3    | NA              | NA           | NA       | 11     | NA      | 11       |        |
| 2-MW-8  | 24.7    | 61.6    | 48.7     | 28       | 28     | 48              | 51           | 42       | 41     | 40      | 71       |        |
| 2-MW-9  | N<br>N  | NA      | R        | NA       | N<br>N | NA              | NA           | NA       | N<br>N | NA      | R        |        |
| 2-MW-10 | N<br>N  | NA      | N<br>N   | NA       | N      | NA              | NA           | NA       | NA     | NA      | NA       |        |
| 2-MW-11 | QN      | NA      | NA       | <u>N</u> | NA     | NA              | NA           | NA       | NA     | NA      | NA       |        |
| 2-MW-12 | R       | NA      | NA       | N<br>N   | NA     | NA              | NA           | NA       | NA     | NA      | NA       |        |
| OS-MW-1 | ΩN      | R       | R        | R        | N      | ND<br>ND        | QN<br>N      | NA       | R      | NA      | N<br>N   |        |
| OS-MW-2 | QN      | NA      |          | NA       | EN     | NA              | NA           | NA       | QN     | NA      | PA<br>PA |        |
|         |         |         |          |          |        |                 |              |          |        |         |          |        |

Table 6
Summary of BGMP Key Contaminants of Concern IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |         |                |        | TPH     | TPH as gasoline (mg/L) | (mg/L)   |        |        |         |          |        |
|---------|---------|---------|----------------|--------|---------|------------------------|----------|--------|--------|---------|----------|--------|
|         | Dec-99  | Fall-00 | Win-01         | Spr-01 | Sum-01  | Fall-01                | Win-02i  | Spr-02 | Sum-02 | Fall-02 | Win-03   | Spr-03 |
| 2-MW-1  | S       | Ð       | ON.            | Ð      | Ð       | QN                     | NA       | NA     | NA     | NA      | NA       | NA     |
| 2-MW-3  | N       | QN      | R              | R      | R       | R                      | NA       | ND     | NA     | NA      | NA       | NA     |
| 2-MW-5  | N       | R       | QN             | R      | R       | R                      | ND       | NA     | NA     | NA      | NA       | NA     |
| 2-MW-6  | N       | N<br>N  | S              | R      | ND      | ND                     | ND<br>ND | NA     | NA     | NA      | NA       | NA     |
| 2-MW-7  | N       | 0.11    | S              | R      | R       | ND                     | 0.27     | NA     | 0.25   | NA      | 0.15     | NA     |
| 2-MW-8  | 0.0719  | 69.0    | 0.62           | NA     | 0.88    | 0.64                   | 4.9      | 1.2    | 2.8    | 2.3     | 3.6      | 2.72   |
| 2-MW-9  | ON.     | R       | QX             | R      | QN<br>N | R                      | NA       | NA     | ND     | NA      | ND       | NA     |
| 2-MW-10 | QN      | R       | R              | R      | R       | R                      | NA       | NA     | NA     | NA      | NA       | NA     |
| 2-MW-11 | NA      | NA      | NA             | N      | N<br>N  | ND                     | ND       | QN     | NA     | NA      | NA       | NA     |
| 2-MW-12 | NA      | NA      | NA             | R      | QN<br>N | ND                     | N        | ND     | ND     | NA      | NA       | NA     |
| OS-MW-1 | R       | R       | R              | R      | N<br>N  | ND                     | ND       | NA     | N      | NA      | ND<br>ND | NA     |
| OS-MW-2 | NA      | NA      | NA             | QN     | ND      | QN                     | QN       | NA     | ND     | NA      | ND       | NA     |
|         |         |         |                |        |         |                        |          |        |        |         |          |        |
|         | Sum-03  | Fall-03 | Win-04         | Spr-04 | Sum-04  | Fall-04                | Win-05   | Spr-05 | Sum-05 | Fall-05 | Win-06   |        |
| 2-MW-1  | NA      | NA      | NA             | NA     | NA      | NA                     | NA       | NA     | NA     | NA      | NA       |        |
| 2-MW-3  | Q       | NA      | NA             | NA     | NA      | NA                     | NA       | NA     | NA     | NA      | NA       |        |
| 2-MW-5  | NA      | NA      | NA             | NA     | NA      | NA                     | NA       | NA     | NA     | NA      | NA       |        |
| 2-MW-6  | NA      | NA      | NA             | NA     | NA      | NA                     | NA       | NA     | NA     | NA      | NA       |        |
| 2-MW-7  | 60.0    | NA      | 0.00           | NA     | 0.1     | NA                     | NA       | NA     | 0.2    | NA      | 0.29     |        |
| 2-MW-8  | 2.12    | 2.27    | 2.55           | 1.5    | 1.2     | 2.3                    | NA       | NA     | 1.4    | NA      | 2.8      |        |
| 2-MW-9  | N<br>ON | NA      | $0.02^{\circ}$ | NA     | Q       | NA                     | NA       | NA     | N      | NA      | R        |        |
| 2-MW-10 | NA      | NA      | NA             | NA     | NA      | NA                     | NA       | NA     | NA     | NA      | NA       |        |
| 2-MW-11 | NA      | NA      | NA             | NA     | NA      | NA                     | NA       | NA     | NA     | NA      | NA       |        |
| 2-MW-12 | NA      | NA      | NA             | NA     | NA      | NA                     | NA       | NA     | NA     | NA      | NA       |        |
| OS-MW-1 | N<br>N  | NA      | $0.02^{\circ}$ | NA     | N<br>N  | NA                     | NA       | NA     | R      | NA      | R        |        |
| OS-MW-2 | Q<br>N  | NA      | $0.03^{\circ}$ | NA     | Q       | NA                     | QZ       | NA     | Q      | NA      | 2        |        |

Table 6
Summary of BGMP Key Contaminants of Concern IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |          |         |        |         | Nap     | Naphthalene (µg/L) | ug/L)        |         |          |         |          |        |
|---------|----------|---------|--------|---------|---------|--------------------|--------------|---------|----------|---------|----------|--------|
|         | Dec-99   | Fall-00 | Win-01 | Spr-01  | Sum-01  | Fall-01            | $Win-02^{i}$ | Spr-02  | Sum-02   | Fall-02 | Win-03   | Spr-03 |
| 2-MW-1  | 0.124    | QN      | QN     | QN      | QN      | Ð                  | QN           | NA      | QN<br>QN | NA      | QN<br>N  | NA     |
| 2-MW-3  | R        | N<br>N  | R      | QN      | N<br>N  | ND                 | N<br>ON      | QN<br>N | N<br>N   | NA      | ND<br>ND | NA     |
| 2-MW-5  | N<br>N   | N<br>N  | N<br>N | N<br>N  | ND      | ND                 | ON.          | NA      | R        | NA      | ND       | NA     |
| 2-MW-6  | N<br>N   | QN<br>N | R      | ON.     | QN<br>N | R                  | NO           | NA      | NA       | NA      | NA       | NA     |
| 2-MW-7  | ΩN       | N<br>N  | N      | R       | QN      | ND                 | R            | NA      | R        | NA      | ND       | NA     |
| 2-MW-8  | 1.07     | R       | N      | NA      | 5.3     | ND                 | 21           | 10      | 18       | 12      | 16       | 15.2   |
| 2-MW-9  | 0.205    | QN      | QN.    | Q       | R       | R                  | ON.          | NA      | N        | NA      | ND       | NA     |
| 2-MW-10 | 0.137    | N<br>N  | R      | QN<br>Q | ON.     | N<br>N             | N<br>N       | NA      | NA       | NA      | NA       | NA     |
| 2-MW-11 | NA       | NA      | NA     | Q       | QN<br>Q | ND                 | N<br>ON      | ND      | NA       | NA      | NA       | NA     |
| 2-MW-12 | NA       | NA      | NA     | QN      | R       | R                  | N<br>N       | ND      | N<br>N   | NA      | NA       | NA     |
| OS-MW-1 | ON       | QN      | R      | R       | R       | R                  | R            | NA      | R        | R       | QN       | NA     |
| OS-MW-2 | NA       | NA      | NA     | ND      | ND      | ND                 | ND           | NA      | ND       | NA      | ND       | NA     |
|         |          |         |        |         |         |                    |              |         |          |         |          |        |
|         | Sum-03   | Fall-03 | Win-04 | Spr-04  | Sum-04  | Fall-04            | Win-05       | Spr-05  | Sum-05   | Fall-05 | Win-06   |        |
| 2-MW-1  | QN       | NA      | ND     | NA      | ON      | NA                 | ND           | NA      | ON       | NA      | ND       |        |
| 2-MW-3  | QN       | NA      | R      | NA      | R       | NA                 | QN           | NA      | N<br>N   | NA      | Q.       |        |
| 2-MW-5  | N        | NA      | R      | NA      | QN      | NA                 | ND           | NA      | R        | NA      | N<br>N   |        |
| 2-MW-6  | NA       | NA      | NA     | NA      | NA      | NA                 | NA           | NA      | NA       | NA      | R        |        |
| 2-MW-7  | ON<br>ON | NA      | R      | NA      | Q<br>N  | NA                 | ON           | NA      | R        | NA      | QN       |        |
| 2-MW-8  | 18.5     | 25.7    | 28.8   | 6.7     | 9.2     | 21                 | 17           | 22      | 16       | 12      | 23       |        |
| 2-MW-9  | ON<br>ON | NA      | R      | NA      | R       | NA                 | Q            | NA      | R        | NA      | N<br>N   |        |
| 2-MW-10 | NA       | NA      | NA     | NA      | NA      | NA                 | NA           | NA      | NA       | NA      | NA       |        |
| 2-MW-11 | NA       | NA      | NA     | NA      | NA      | NA                 | NA           | NA      | NA       | NA      | NA       |        |
| 2-MW-12 | NA       | NA      | NA     | NA      | NA      | NA                 | NA           | NA      | NA       | NA      | NA       |        |
| OS-MW-1 | NO       | NA      | N<br>N | NA      | Q<br>N  | NA                 | ON           | NA      | N<br>N   | NA      | N<br>N   |        |
| OS-MW-2 | ND       | NA      | ND     | NA      | ND      | NA                 | ND           | NA      | ND       | NA      | ND       |        |

<S2\_T6\_Win06\_COCs.xls> 5/30/2006

Table 6
Summary of BGMP Key Contaminants of Concern
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |          |         |        |          |          |                                           | ],                    |        |         |         |          |        |
|---------|----------|---------|--------|----------|----------|-------------------------------------------|-----------------------|--------|---------|---------|----------|--------|
|         |          |         |        |          | Dissolve | Dissolved Aluminum $(\mu \mathrm{g/L})^c$ | m (µg/L) <sup>d</sup> |        |         |         |          |        |
|         | Dec-99   | Fall-00 | Win-01 | Spr-01   | Sum-01   | Fall-01                                   | $Win-02^{i}$          | Spr-02 | Sum-02  | Fall-02 | Win-03   | Spr-03 |
| 2-MW-1  | NA       | 238     | 380    | 293      | ND       | 464                                       | 662                   | NA     | 288     | NA      | QZ       | NA     |
| 2-MW-3  | NA       | R       | QN     | N<br>N   | ND       | R                                         | N<br>N                | 118    | N<br>N  | NA      | QN<br>N  | NA     |
| 2-MW-5  | NA       | QN<br>N | N<br>N | N        | R        | ND                                        | 500                   | NA     | N       | NA      | N<br>N   | NA     |
| 2-MW-6  | NA       | 399     | N<br>N | N<br>N   | R        | 229                                       | 829                   | NA     | 374     | NA      | NA       | NA     |
| 2-MW-7  | NA       | 470     | 373    | 423      | 408      | 999                                       | 1,180                 | NA     | 200     | NA      | 475      | NA     |
| 2-MW-8  | NA       | 1,380   | 1,260  | NA       | 1,650    | 1,970                                     | 13,500                | 12,700 | 12,300  | 3,970   | 7,410    | 8,600  |
| 2-MW-9  | NA       | ON      | N<br>N | 268      | ND<br>ND | 483                                       | 548                   | NA     | QN      | NA      | 265      | NA     |
| 2-MW-10 | NA       | N<br>Q  | R      | R        | 232      | 277                                       | 651                   | NA     | 341     | NA      | 622      | NA     |
| 2-MW-11 | NA       | NA      | NA     | QN       | R        | QN<br>N                                   | 341                   | 242    | N<br>N  | S       | N        | 33.2°  |
| 2-MW-12 | NA       | NA      | NA     | N<br>N   | Q.       | QN                                        | 284                   | 186    | QN      | N<br>N  | N<br>N   | 26.6°  |
| OS-MW-1 | NA       | R       | R      | ND<br>ND | N        | N<br>N                                    | 313                   | NA     | QN<br>N | NA      | QN.      | NA     |
| OS-MW-2 | NA       | NA      | NA     | ND       | ND       | ND                                        | 211                   | NA     | ON      | NA      | S        | NA     |
|         |          |         |        |          |          |                                           |                       |        |         |         |          |        |
|         | Sum-03   | Fall-03 | Win-04 | Spr-04   | Sum-04   | Fall-04                                   | Win-05                |        | Sum-05  | Fall-05 | Win-06   |        |
| 2-MW-1  | 383      | NA      | 464    | NA       | 408      | NA                                        | 386                   |        | 445     | NA      | 413      |        |
| 2-MW-3  | ON.      | NA      | 17.8   | NA       | R        | NA                                        | R                     |        | R       | NA      | R        |        |
| 2-MW-5  | QN<br>ON | NA      | 21.9   | NA       | R        | NA                                        | N<br>N                |        | QN      | NA      | R        |        |
| 2-MW-6  | NA       | NA      | NA     | NA       | NA       | NA                                        | NA                    |        | NA      | NA      | NA       |        |
| 2-MW-7  | 519      | NA      | 224    | NA       | 574      | NA                                        | 799                   |        | 543     | NA      | 652      |        |
| 2-MW-8  | 8,320    | 9,300   | 088'9  | 5,330    | 5,100    | 5,420                                     | 5,070                 |        | 5,060   | 4,960   | 5,750    |        |
| 2-MW-9  | 284      | NA      | 132    | NA       | N<br>N   | NA                                        | 104                   |        | 61.5    | NA      | PA<br>PA |        |
| 2-MW-10 | 939      | NA      | 505    | NA       | 213      | NA                                        | 521                   | NA     | R       | NA      | 74.7     |        |
| 2-MW-11 | NA       | 26.2    | 23     | NA       | N<br>N   | N<br>N                                    | N<br>N                |        | N<br>Q  | R       | R        |        |
| 2-MW-12 | NA       | 33.6    | 19     | NA       | <u>N</u> | N<br>N                                    | R                     |        | N<br>N  | R       | R        |        |
| OS-MW-1 | 42.8     | NA      | 44.6   | NA       | N<br>Q   | NA                                        | R                     |        | N<br>N  | NA      | N<br>N   |        |
| OS-MW-2 | 20.1     | NA      | 26.9   | NA       | ND       | NA                                        | ND                    |        | N N     | NA      | R        |        |
|         |          |         |        |          |          |                                           |                       | L      |         |         |          |        |

Table 6
Summary of BGMP Key Contaminants of Concern IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |              |          |          | Dissolve | Dissolved Beryllium $(\mu g/L)^6$ | m (µg/L) <sup>e</sup> |        |        |         |         |         |
|---------|---------|--------------|----------|----------|----------|-----------------------------------|-----------------------|--------|--------|---------|---------|---------|
|         | Dec-99  | Fall-00      | Win-01   | Spr-01   | Sum-01   | Fall-01                           | Win-02i               | Spr-02 | Sum-02 | Fall-02 | Win-03  | Spr-03  |
| 2-MW-1  | NA      | ND           | ND<br>ND | ND       | ON       | ND                                | QN<br>N               | NA     | EN EN  | NA      | QN      | NA      |
| 2-MW-3  | NA      | QN           | R        | ND<br>ND | QN       | R                                 | N<br>N                | N<br>N | R      | NA      | QN<br>N | NA      |
| 2-MW-5  | NA      | QN<br>N      | R        | R        | QN.      | N<br>Q                            | N<br>N                | NA     | N<br>N | NA      | ON.     | NA      |
| 2-MW-6  | NA      | <del>N</del> | R        | R        | R        | R                                 | R                     | NA     | N<br>N | NA      | NA      | NA      |
| 2-MW-7  | NA      | QN<br>N      | R        | R        | R        | R                                 | 2                     | NA     | N<br>N | NA      | N<br>N  | NA      |
| 2-MW-8  | NA      | R            | R        | NA       | R        | R                                 | 12.7                  | 13.1   | 12.2   | 7.02    | 11.3    | 10.3    |
| 2-MW-9  | NA      | N<br>N       | R        | ND<br>ND | ND       | N<br>N                            | R                     | NA     | R      | NA      | QN      | NA      |
| 2-MW-10 | NA      | R            | R        | R        | R        | QN<br>Q                           | R                     | NA     | R      | NA      | R       | NA      |
| 2-MW-11 | NA      | NA           | NA       | R        | R        | R                                 | ND                    | N<br>N | ON.    | R       | N<br>N  | N<br>O  |
| 2-MW-12 | NA      | NA           | NA       | R        | N<br>N   | N                                 | N<br>Q                | N<br>N | N<br>N | R       | N<br>N  | N<br>ON |
| OS-MW-1 | NA<br>A | R            | R        | ND<br>ND | R        | R                                 | N<br>N                | NA     | R      | NA      | N<br>N  | NA      |
| OS-MW-2 | NA      | NA           | NA       | QN       | Ω<br>N   | ND                                | ON                    | NA     | ND     | NA      | ND      | NA      |
|         |         | ;            | ;        |          | ,        | :                                 | ;                     | i      | ·      |         |         |         |
|         | Sum-03  | Fall-03      | Win-04   | Spr-04   | Sum-04   | Fall-04                           | Win-05                | Spr-05 | Sum-05 | Fall-05 | Win-06  |         |
| 2-MW-1  | S       | NA           | Q<br>Q   | NA       | N<br>N   | NA                                | Q<br>Z                | NA     | R      | NA      | N<br>N  |         |
| 2-MW-3  | N<br>Q  | NA           | R        | NA       | R        | NA                                | N<br>Q                | NA     | R      | NA      | QN<br>Q |         |
| 2-MW-5  | ND      | NA           | R        | NA       | R        | NA                                | N<br>N                | NA     | R      | NA      | N<br>Q  |         |
| 2-MW-6  | NA      | NA           | NA       | NA       | NA       | NA                                | NA                    | NA     | NA     | NA      | NA      |         |
| 2-MW-7  | 1.5     | NA           | ON.      | NA       | 2.43     | NA                                | 1.64                  | NA     | 1.71   | NA      | 1.62    |         |
| 2-MW-8  | 10      | 10.9         | 8.6      | 8.42     | 8.25     | 7.79                              | 7.47                  | 7.82   | 18'9   | 7.14    | 7.68    |         |
| 2-MW-9  | N<br>Q  | NA           | ND<br>ND | NA       | R        | NA                                | N<br>O                | NA     | R      | NA      | R       |         |
| 2-MW-10 | 2.7     | NA           | 1.7      | NA       | R        | NA                                | 1.5                   | NA     | N<br>N | NA      | R       |         |
| 2-MW-11 | NA      | R            | N<br>N   | NA       | R        | R                                 | R                     | QN     | R      | R       | N<br>N  |         |
| 2-MW-12 | NA      | R            | QN<br>N  | NA       | R        | R                                 | N<br>N                | R      | R      | N<br>N  | R       |         |
| OS-MW-1 | NO      | NA           | R        | NA       | R        | NA                                | NO                    | NA     | R      | NA      | R       |         |
| OS-MW-2 | QN      | NA           | ON       | NA       | ND<br>ND | NA                                | ND                    | NA     | ON     | NA      | R       |         |

Table 6
Summary of BGMP Key Contaminants of Concern
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |         |        |        | Dissolve | Dissolved Cadmium (μg/L) | m (µg/L) <sup>†</sup> |        |              |         |        |        |
|---------|---------|---------|--------|--------|----------|--------------------------|-----------------------|--------|--------------|---------|--------|--------|
|         | Dec-99  | Fall-00 | Win-01 | Spr-01 | Sum-01   | Fall-01                  | Win-02                | Spr-02 | Sum-02       | Fall-02 | Win-03 | Spr-03 |
| 2-MW-1  | 10.8    | 55.4    | 12.4   | 12.7   | 10.2     | 12.4                     | 11.1                  | NA     | 10.7         | NA      | 9.62   | NA     |
| 2-MW-3  | 2.32    | 12      | R      | 4.13   | 9.9      | 2.05                     | 5.84                  | 7      | 5.98         | NA      | 4.17   | NA     |
| 2-MW-5  | QN      | 4.9     | 298    | 141    | 59.3     | 137                      | 4.74                  | NA     | 13.6         | NA      | 6.68   | NA     |
| 2-MW-6  | 4.31    | OZ.     | 41     | 20.5   | 8.96     | 30.2                     | 5.22                  | NA     | 4.66         | NA      | NA     | NA     |
| 2-MW-7  | 2.79    | 4.4     | 6.39   | 6.62   | 87.9     | 29.7                     | 17.5                  | NA     | 1.94         | NA      | 8.63   | NA     |
| 2-MW-8  | 22.4    | 6.74    | 35.2   | NA     | 34       | 38.7                     | 35                    | 37     | 34.8         | 26.4    | 38.9   | 41.6   |
| 2-MW-9  | 42.3    | 34      | 74.5   | 76.5   | 81.1     | 96                       | 72.1                  | NA     | 73.4         | NA      | 12.4   | NA     |
| 2-MW-10 | 60.2    | 80.4    | 78.8   | 76.3   | 77.4     | 88.1                     | 71.8                  | NA     | 87.5         | NA      | 11.3   | NA     |
| 2-MW-11 | NA      | NA      | NA     | 5.87   | 5.39     | 7.18                     | 4.33                  | 5.11   | 5.8          | 4.56    | 5.74   | 5      |
| 2-MW-12 | NA<br>A | NA      | NA     | 36.3   | 36.1     | 31.6                     | Ð                     | 12.7   | 17.4         | R       | 8.12   | 1.9    |
| OS-MW-1 | 38.1    | 85.6    | 54.7   | 54.5   | 50.8     | 60.5                     | 46.6                  | NA     | 58.8         | NA      | 63.2   | NA     |
| OS-MW-2 | NA      | NA      | NA     | 6.82   | 13.9     | 2.56                     | 10.9                  | NA     | 10.3         | NA      | 10.4   | NA     |
|         |         |         |        |        |          | !                        |                       |        |              |         |        |        |
|         | Sum-03  | Fall-03 | Win-04 | Spr-04 | Sum-04   | Fall-04                  | Win-05                | Spr-05 | Sum-05       | Fall-05 | Win-06 |        |
| 2-MW-1  | 13.1    | NA      | 14.1   | NA     | 12       | NA                       | 11                    | NA     | 14           | NA      | 11.8   |        |
| 2-MW-3  | N<br>N  | NA      | QN     | NA     | ON<br>ON | NA                       | R                     | NA     | N<br>N       | NA      | ΩN     |        |
| 2-MW-5  | 4.5     | NA      | 3.4    | NA     | 14.1     | NA                       | 4.96                  | NA     | 5.49         | NA      | 3.74   |        |
| 2-MW-6  | NA      | NA      | NA     | NA     | NA       | NA                       | NA                    | NA     | NA           | NA      | NA     |        |
| 2-MW-7  | 7.6     | NA      | 6.8    | NA     | 10.3     | NA                       | 7.06                  | NA     | 7.63         | NA      | 7.93   |        |
| 2-MW-8  | 39.8    | 38.9    | 39.6   | 40.5   | 40.2     | 39.5                     | 39.5                  | 36.8   | 37.6         | 33.9    | 35     |        |
| 2-MW-9  | 85.8    | NA      | 83.5   | NA     | 84,4     | NA                       | 87.2                  | NA     | 86.1         | NA      | 84.8   |        |
| 2-MW-10 | 59.7    | NA      | 6.69   | NA     | 64.5     | NA                       | 71.3                  | NA     | <del>N</del> | NA      | 28.8   |        |
| 2-MW-11 | NA      | 6.5     | 4.9    | NA     | 4.59     | 7.1                      | 8.21                  | 3.2    | 7.74         | 3.69    | 5      |        |
| 2-MW-12 | NA      | Q.      | ON.    | NA     | ND<br>ND | N<br>N                   | ND                    | N<br>N | 2.07         | R       | QN     |        |
| OS-MW-1 | 64.7    | NA      | 73.8   | NA     | 64.9     | NA                       | 72.3                  | NA     | 75           | NA      | 52.3   |        |
| OS-MW-2 | 9.8     | NA      | 5.2    | NA     | 2.25     | NA                       | 2.52                  | NA     | 3.84         | NA      | 3.39   |        |

Table 6
Summary of BGMP Key Contaminants of Concern
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |        |         |        |        | Vandenber | 'andenberg AFB, California             | ifornia               |        |          |         |        |        |
|---------|--------|---------|--------|--------|-----------|----------------------------------------|-----------------------|--------|----------|---------|--------|--------|
|         |        |         |        |        | Dissolve  | Dissolved Selenium (μg/L) <sup>g</sup> | n (μg/L) <sup>g</sup> |        |          |         |        |        |
|         | Dec-99 | Fall-00 | Win-01 | Spr-01 | Sum-01    | Fall-01                                | $Win-02^{i}$          | Spr-02 | Sum-02   | Fall-02 | Win-03 | Spr-03 |
| 2-MW-1  | NA     | 39.8    | 35.8   | 32.4   | 37.6      | 43.8                                   | 32                    | NA     | 23.9     | NA      | 127    | NA     |
| 2-MW-3  | NA     | R       | R      | R      | R         | R                                      | R                     | R      | <u>R</u> | NA      | 23.1   | NA     |
| 2-MW-5  | NA     | QN      | ND     | 14.9   | 7.08      | 10.7                                   | R                     | NA     | QN       | NA      | 47.6   | NA     |
| 2-MW-6  | NA     | 31.9    | 29.8   | 28.5   | 35.9      | 6.83                                   | 30.1                  | NA     | QN<br>ON | NA      | NA     | NA     |
| 2-MW-7  | NA     | 35.1    | 28.8   | 34.2   | 31.2      | 46.1                                   | 31.3                  | NA     | 22.3     | NA      | 63.1   | NA     |
| 2-MW-8  | NA     | 37.7    | 36.3   | NA     | 37.5      | 43.2                                   | R                     | 35.2   | QN<br>N  | 21.3    | 88.0   | 26.7   |
| 2-MW-9  | NA     | 43.4    | 37.5   | 40.3   | 42.0      | 47.8                                   | 31.1                  | NA     | 31.2     | NA      | 88.6   | NA     |
| 2-MW-10 | NA     | 23.5    | 14.3   | 20.9   | 32.3      | 27.4                                   | 22.6                  | NA     | 29.6     | NA      | 20.8   | NA     |
| 2-MW-11 | NA     | NA      | NA     | 25.3   | 24.1      | 25.2                                   | 25.8                  | 88     | 23.7     | 87.5    | 148    | 36.3   |
| 2-MW-12 | NA     | NA      | NA     | R      | R         | R                                      | R                     | R      | QX       | 40.7    | 52.1   | R      |
| OS-MW-1 | NA     | 14.8    | 9.11   | 16.3   | 15.8      | 13.6                                   | R                     | NA     | QN       | NA      | 58.3   | NA     |
| OS-MW-2 | NA     | NA      | NA     | 7:01   | 13.6      | Ð.                                     | ON<br>N               | NA     | QN       | NA      | 34.4   | NA     |
|         |        |         |        |        |           |                                        |                       |        |          |         |        |        |

|         | Sum-03 Fal | Fall-03 | Win-04 | Spr-04 | Sum-04  | Fall-04 | Win-05   | Spr-05 | Sum-05   | Fall-05 | Win-06 |
|---------|------------|---------|--------|--------|---------|---------|----------|--------|----------|---------|--------|
| 2-MW-1  | 42.9       | NA      | 35     | NA     | 40.1    | NA      | 39.4     | NA     | 45.7     | NA      | 41.7   |
| 2-MW-3  | Q          | NA      | NO     | NA     | QN<br>N | NA      | QZ       | NA     | R        | NA      | R      |
| 2-MW-5  | 62.6       | NA      | 16.9   | NA     | 17.6    | NA      | 25       | NA     | 24.8     | NA      | 21.2   |
| 2-MW-6  | NA         | NA      | NA     | NA     | NA      | NA      | NA       | NA     | NA       | NA      | NA     |
| 2-MW-7  | 57.5       | NA      | 27.2   | NA     | 37.3    | NA      | 3.7      | NA     | 35.8     | NA      | 33     |
| 2-MW-8  | 43.1       | 30.7    | 26.2   | 35.9   | 32.2    | 39.4    | 41       | 39.4   | 40.7     | 36.6    | 38.1   |
| 2-MW-9  | 56.7       | NA      | 33.4   | NA     | 44.7    | NA      | 48.3     | NA     | 48.3     | NA      | 46.8   |
| 2-MW-10 | 23.9       | NA      | 21.1   | NA     | 24.1    | NA      | 28.8     | NA     | N<br>Q   | NA      | 7.46   |
| 2-MW-11 | NA         | 36.3    | 38.6   | NA     | 42.8    | 4.1     | 45.7     | 45.6   | 46       | 40.8    | 41.9   |
| 2-MW-12 | NA         | 3.3     | R      | NA     | ND      | N<br>N  | ND<br>ND | R      | ND<br>ND | R       | R      |
| OS-MW-1 | 18         | NA      | 17.1   | NA     | 15.2    | NA      | 13.3     | NA     | 13.5     | NA      | 66'9   |
| OS-MW-2 | 12.3       | NA      | 8.3    | NA     | 15.9    | NA      | 6.56     | NA     | 7.79     | NA      | 11.4   |

Table 6
Summary of BGMP Key Contaminants of Concern
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |          |         |          |        | Dissolv       | Dissolved Thallium (µg/L) | n (µg/L) <sup>h</sup> |        |         |         |          |        |
|---------|----------|---------|----------|--------|---------------|---------------------------|-----------------------|--------|---------|---------|----------|--------|
|         | Dec-99   | Fall-00 | Win-01   | Spr-01 | Sum-01        | Fall-01                   | Win-02i               | Spr-02 | Sum-02  | Fall-02 | Win-03   | Spr-03 |
| 2-MW-1  | NA       | Ð       | ND<br>ND | R      | QN            | 9.99                      | EN CHA                | NA     | QN      | NA      | QN<br>Pl | NA     |
| 2-MW-3  | NA       | S       | R        | R      | R             | 44.9                      | N<br>N                | N<br>N | N<br>N  | NA      | R        | NA     |
| 2-MW-5  | NA       | ND      | N<br>N   | R      | R             | 90.0                      | N<br>N                | NA     | N<br>N  | NA      | R        | NA     |
| 2-MW-6  | NA       | R       | R        | R      | R             | 35.9                      | R                     | NA     | R       | NA      | NA       | NA     |
| 2-MW-7  | NA       | R       | ND<br>ND | N      | QN<br>N       | 59.9                      | R                     | NA     | R       | NA      | N        | NA     |
| 2-MW-8  | NA       | R       | R        | NA     | R             | 76.9                      | R                     | R      | R       | 14.8    | ND       | R      |
| 2-MW-9  | NA       | R       | R        | R      | QN<br>N       | 78.4                      | N<br>N                | NA     | Q<br>N  | NA      | N        | NA     |
| 2-MW-10 | NA       | R       | R        | R      | <u>R</u>      | 71.1                      | N<br>N                | NA     | ON.     | NA      | ND<br>ND | NA     |
| 2-MW-11 | NA       | NA      | NA       | R      | R             | 66.1                      | N<br>N                | R      | R       | R       | N        | N<br>N |
| 2-MW-12 | NA       | NA      | NA       | R      | R             | 7.69                      | R                     | N<br>N | QN      | N<br>N  | ND       | N<br>N |
| OS-MW-1 | NA       | N       | ND<br>ND | R      | R             | 65.2                      | QN<br>N               | NA     | QN<br>N | NA      | QN<br>Q  | NA     |
| OS-MW-2 | NA       | NA      | NA       | ND     | N<br>N        | 38.5                      | N                     | NA     | N       | NA      | N<br>N   | NA     |
|         |          |         |          |        |               |                           |                       |        |         |         |          |        |
|         | Sum-03   | Fall-03 | Win-04   | Spr-04 | <b>Sum-04</b> | Fall-04                   | Win-05                | Spr-05 | Sum-05  | Fall-05 | Win-06   |        |
| 2-MW-1  | ND       | NA      | 1.30     | NA     | 7.55          | NA                        | 7.62                  | NA     | 77.6    | NA      | QN       |        |
| 2-MW-3  | S        | NA      | QN       | NA     | 6.03          | NA                        | QN<br>N               | NA     | N<br>N  | NA      | QN<br>N  |        |
| 2-MW-5  | R        | NA      | N<br>QN  | NA     | 5.88          | NA                        | R                     | NA     | 7.01    | NA      | N<br>N   |        |
| 2-MW-6  | NA       | NA      | NA       | NA     | NA            | NA                        | NA                    | NA     | NA      | NA      | NA       |        |
| 2-MW-7  | QN<br>QN | NA      | Ω        | NA     | 2.6           | NA                        | 86.6                  | NA     | 5.48    | NA      | N<br>N   |        |
| 2-MW-8  | S        | R       | QN       | N<br>N | 10.1          | 8.01                      | QN                    | 7.55   | R       | 6.27    | -<br>R   |        |
| 2-MW-9  | R        | NA      | 1.10     | NA     | 9.01          | NA                        | Q.                    | NA     | 6.26    | NA      | N        |        |
| 2-MW-10 | R        | NA      | R        | NA     | R             | NA                        | 6.44                  | NA     | 7.44    | NA      | R        |        |
| 2-MW-11 | NA       | N<br>N  | 1.40     | NA     | 6.17          | R                         | 8.56                  | 11.1   | 6.03    | 69'9    | R        |        |
| 2-MW-12 | NA       | R       | 1.80     | NA     | ND<br>ND      | R                         | ND                    | 5.5    | 5.99    | 7.28    | R        |        |
| OS-MW-1 | S        | NA      | 0.85     | NA     | QZ            | NA                        | -<br>N                | NA     | N<br>N  | NA      | R        |        |
| OS-MW-2 | EN       | NA      | 1.30     | NA     | ND            | NA                        | ND                    | NA     | ND      | NA      | N<br>N   |        |
|         |          |         |          |        |               |                           |                       |        |         |         |          |        |

### Summary of BGMP Key Contaminants of Concern Table 6

#### IRP Site 2 (Old Base Service Station) Vandenberg AFB, California

#### Definition(s):

background threshold value

maximum contaminant level MCL

micrograms per liter μg/L

milligrams per liter mg/L

NA

not analyzed

Not detected; result is less than the method detection limit. S

total petroleum hydrocarbons TPH

Bold type indicates results that were above the MCL.

Shading indicates results that were above the 95th percentile BTV.

The MCLs for benzene, toluene, and ethylbenzene are 1, 150, and 300 μg/L, respectively.

The MCL of 1,750  $\mu$ g/L applies to the sum of m-xylene, o-xylene, and p-xylene. þ

The data were qualified for blank contamination during the validation process. The laboratory method blank

showed the same order of magnitude as the sample results. The sample results are strongly suspected to be false positive. The BTV and MCL for aluminum are 1,200 and 1,000 µg/L, respectively.

The BTV and MCL for beryllium are 0.3 and  $4~\mu g/L$ , respectively.

The BTV and MCL for cadmium are both 5 µg/L.

The BTV and MCL for selenium are 3 and 50 μg/L, respectively.

The BTV and MCL for thallium are 1 and 2 µg/L, respectively.

Dedicated MicroPurge pumps were installed in Site 2 wells during winter 2002.

Page of

| DATE                  | 901001-0                                   | - SITE                                        | SITE NUMBER                  |                  | 1            |                    | PURGING DEVICE                | JEVICE -                 | MICROP                                        | MICROPURGE DEDICATED PUMP | ATED PUMP                    |                       |
|-----------------------|--------------------------------------------|-----------------------------------------------|------------------------------|------------------|--------------|--------------------|-------------------------------|--------------------------|-----------------------------------------------|---------------------------|------------------------------|-----------------------|
| PROGRAM NAME          | AME BGMP                                   |                                               | TRIP BLANK I.D.              | V=18171 ®        | 12           | 7                  | SAMPLING DEVICE               | DEVICE                   | MICROP                                        | MICROPURGE DEDICATED PUMP | ATED PUMP                    |                       |
| MONITORING            | MONITORING WELL IDENTIFICATION .           |                                               | 2-Mu)-1                      | •                |              |                    | ות גםם תום                    | PID DEADING BY CASTIC () |                                               | 0.0                       |                              | 6                     |
| SAMPLE I.D.           | IMMEN                                      | DUPLICATE I.D. / COLLECTION TIME V990603/1710 | COLLECTION .                 | TIME V9          | 120h         | 151/60             | -                             | NG IN BREATH             | PID READING IN BREATHING ZONE (ppm) (initial) |                           | (vented to)                  | 1                     |
| STATIC WATE           | STATIC WATER LEVEL (ft btoc) 14.84         | 84 TOT                                        | _ TOTAL WELL DEPTH (ft btoc) | TH (ft btoc)     | 2            | 36.3               |                               |                          |                                               |                           |                              |                       |
| WATER COLUMN (feet)   | MN (feet) 21.                              | ĺ                                             | TUBING DIAMETER (in)         | R (in)           | 3/8          | <b>6</b>           | SAMPLER                       | SAMPLER'S SIGNATURE      | 4                                             | to                        | \{ \.                        |                       |
| PUMP & TUBING (V) (L) | NG (V) (L)                                 | 0.68                                          |                              |                  | 5 V (L)      | 3,40               |                               |                          |                                               |                           | 4                            |                       |
| Time                  | Activity                                   | Water<br>Level<br>(ft btoc)                   | Temp<br>(Deg. C)             | EC<br>(µmhos/cm) | Hď           | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | ORP<br>(mV)              | Color                                         | Volume<br>Purged<br>(L)   | Pump & Tubing Volumes Purged | Flow<br>Rate<br>(LPM) |
| 0051                  | Arrived at well                            |                                               |                              |                  |              |                    |                               |                          |                                               |                           |                              |                       |
| 1510                  | Begin Purge                                |                                               |                              |                  |              |                    |                               |                          |                                               |                           |                              | 0.30                  |
| 1513                  |                                            | 1495                                          | 17.46                        | 10/71 5.39 72.9  | 65.3         | 72.9               | 2.30                          | 075-                     | Cleat                                         | 0.30                      | ۲۵                           | <b></b>  ,            |
| 1516                  |                                            | 15.00                                         | /7.23                        | 16295 539        | 539          | ±8.6               | 1.15                          | -432                     | Steat                                         | <i>69</i>                 | 2.64                         |                       |
| 1519                  |                                            | (\$.00                                        | 17.12                        | 10292 5:38 25.7  | 5:38         | <b>35.7</b>        | 280                           | -388                     | Clast                                         | 2-70                      | <b>3.6</b> 2                 |                       |
| 1522                  |                                            | 15,00                                         | 1710                         | 8.3c 75.3 18col  | 5.34         | 25.3               | 79.0                          | 185-                     | clear                                         | 3.60                      | <u>ب</u>                     | •                     |
| 1523                  | END Purge                                  | 15.00                                         |                              |                  |              |                    |                               |                          |                                               |                           |                              | <i>!</i>              |
| 1525                  | SAMPLE                                     |                                               |                              |                  |              |                    |                               |                          |                                               |                           |                              |                       |
|                       |                                            |                                               |                              |                  |              |                    |                               |                          |                                               |                           |                              |                       |
|                       |                                            |                                               |                              |                  |              |                    |                               |                          |                                               |                           |                              |                       |
|                       |                                            |                                               |                              |                  |              |                    |                               |                          |                                               |                           |                              |                       |
| ST.                   | Vacated well                               |                                               |                              |                  |              |                    |                               |                          |                                               |                           |                              |                       |
| Fe+2 (ppm) .          | Taken i                                    | Taken immediately before sampling             | ore sampling.                |                  |              |                    |                               |                          | PARAMETERS FOR WATER OHALITY STARH IZATION    | VATER OUA                 | LITY STAR                    | 11 17 AT              |
| VATER LEV             | WATER LEVEL (ft btoc) AT TIME OF SAMPLING: | SAMPLING: _                                   | 15,00                        | FILTER           | FILTER LOT # | 701                | 410425 464                    |                          | Temperature ±1 C(1.8 F)                       | 1.8 F)                    | Conductivity ± 5%            | 5 NTT 16              |
| Comments:             |                                            |                                               |                              |                  |              |                    |                               |                          | - C.1                                         |                           | randiarity of March          | O TAT OS              |

Page 1\_\_\_ of \_\_\_

| PROGRAM NAME MONITORING WE SAMPLE I.D. STATIC WATER LE | BGA. LL IDENTIFICATION  LL IDENTIFICATION  VEL (ft bioc) 3                          | SI AUPLICATE I                                         | SITE NUMBER  TRIP BLANK I.D.  2 - MIN-3  ELD. / COLLECTION TIME  TOTAL WELL DEPTH (ft btoc) | btoc)            | 63.60       |                    | PURGING DEVICE<br>SAMPLING DEVICE<br>PID READING IN CA | PURGING DEVICESAMPLING DEVICEPID READING IN CASING (ppm) PID READING IN BREATHING Z | NG Ppm                    | ONE (ppm)           | MICROPURGE DEDICATED PUMP  MICROPURGE DEDICATED PUMP  (initial) |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|-------------|--------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------|---------------------|-----------------------------------------------------------------|
| TER COLU                                               | WATER COLUMN (feet) 33, 2 PUMP & TUBING (V) (L) 0.                                  | 35                                                     | TUBING DIAMETER (in)                                                                        |                  | 3/ <b>k</b> | 4.7                |                                                        | SAMPLER'S                                                                           | SAMPLER'S SIGNATURE       | SAMPLER'S SIGNATURE | SAMPLER'S SIGNATURE                                             |
| Time                                                   | Activity                                                                            | Water<br>Level<br>(ft btoc)                            | Temp<br>(Deg. C)                                                                            | EC<br>(µmhos/cm) | pH ,        | Turbidity<br>(NTU) | - H ·                                                  | Dissolved<br>Oxygen<br>(mg/L)                                                       | Dissolved ORP Oxygen (mV) |                     | ORP<br>(mV)                                                     |
| 1560<br>1760                                           | Arrived at well Begin Purge                                                         |                                                        |                                                                                             |                  |             |                    | 111                                                    |                                                                                     |                           |                     |                                                                 |
| 0758                                                   |                                                                                     | 30.7/                                                  | 18.07                                                                                       | 5189             | 6.75        | 3.2                | 1 1                                                    | 1.11                                                                                | 1.11 -348                 |                     | -348                                                            |
| 002                                                    |                                                                                     | 30.72                                                  |                                                                                             | 0/25             | 73.9        | 75.54              |                                                        | 18.0                                                                                | 0.8/ 25.9                 | 25.9                | 25.9 clear                                                      |
| 010/                                                   |                                                                                     | 30.72                                                  |                                                                                             | 8.44 6789        | 0.41        | 1.6.1              | _  0                                                   | 500                                                                                 | 057 214                   |                     | 22.5                                                            |
| 4101                                                   |                                                                                     | 30.72                                                  | 1581                                                                                        | 65% 256.3        | - 1         |                    | 0                                                      | 0.58                                                                                |                           | 19.7                | 19.7 clear                                                      |
| 310                                                    | END PURGE                                                                           |                                                        |                                                                                             |                  | 1 1         |                    |                                                        |                                                                                     |                           |                     |                                                                 |
| 9201                                                   | Sample                                                                              |                                                        |                                                                                             |                  |             |                    |                                                        |                                                                                     |                           |                     |                                                                 |
|                                                        |                                                                                     |                                                        |                                                                                             |                  |             |                    |                                                        |                                                                                     |                           |                     |                                                                 |
| 1945<br>1901                                           | Vacated well                                                                        |                                                        |                                                                                             |                  |             |                    |                                                        |                                                                                     |                           |                     |                                                                 |
| Fe+2 (ppm)<br>WATER LEV                                | Fe+2 (ppm) Taken immediately b WATER LEVEL (ft btoc) AT TIME OF SAMPLING: Comments: | Taken immediately before sampling AE OF SAMPLING: 30-7 | ore sampling. <b>30-72</b>                                                                  | FILTER LOT #     | LOT # _     | Aloux 2464         | K                                                      | 464                                                                                 |                           |                     | PARAMET<br>Temperatu                                            |
|                                                        |                                                                                     |                                                        |                                                                                             |                  |             |                    |                                                        |                                                                                     |                           |                     |                                                                 |

|                            | 5                        | 1                       |                            | $\int$           |
|----------------------------|--------------------------|-------------------------|----------------------------|------------------|
| <br>Telefax (805) 681-3108 | Telephone (805) 681-3100 | Santa Barbara, CA 93110 | 4213 State Street, STE 100 | TETRA TECH, INC. |

| Page       |
|------------|
| <u> </u> - |
| <u>-</u>   |

| Fe+2 (ppm) Taken immediately b WATER LEVEL (ft btoc) AT TIME OF SAMPLING:           | Yacated well - | 357 916 | - | +      | 784      | ٦١٦              | 12/4           | 400   | Begin Purge - | Ng Arrived at well - | Time Activity                 | PUMP & TUBING (V) (L) | WATER COLUMN (feet)  | STATIC WATER LEVEL (ft btoc) 3.30 | SAMPLEID. VIAUS DU               | MONITORING WELL IDENTIFICATION | PROGRAM NAME RUNT         | DATE J/L/05               |
|-------------------------------------------------------------------------------------|----------------|---------|---|--------|----------|------------------|----------------|-------|---------------|----------------------|-------------------------------|-----------------------|----------------------|-----------------------------------|----------------------------------|--------------------------------|---------------------------|---------------------------|
| Taken immediately before sampling ME OF SAMPLING:                                   |                |         |   | 04.04  | 22.09    | ار <u>ي</u><br>- | 91.16          | ¥1.4x | +             |                      | Water<br>Level<br>(ft btoc)   | 7.46                  | TUE                  | TOT                               | DUPLICATE I.D. / COLLECTION TIME | J-MV-5                         | TRUF                      | SITE N                    |
| ore sampling.                                                                       |                |         |   | 2.5%   | 84.7     | 12.30            | 1.34           | 12.28 |               |                      | Temp<br>(Deg. C)              |                       | TUBING DIAMETER (in) | TOTAL WELL DEPTH (ft btoc)        | COLLECTION                       | Y-5                            | TRIP BLANK I.D            | SITE NUMBER               |
| FILTER                                                                              |                |         |   | 7273   | 7168     | 18 99            | (۱۲۸           | 702)  |               |                      | EC<br>(µmhos/cm)              |                       | ER (in)              | TH (ft btoc)                      | TIME                             |                                | ****** (E)                | 2                         |
| FILTER LOT #                                                                        |                |         |   | 605    | 6,35     | 36.3             | 6.07           | 813   |               |                      | pН                            | 5 V (L)               | 3/8                  | h.hh                              | 1/                               |                                | F                         | )                         |
| Alov                                                                                |                |         |   | 1.93   | 1.21     | ۶۰)<br>م         | 7.88           | 1.54  |               |                      | Turbidity<br>(NTU)            | 14.61                 |                      |                                   | 1                                |                                |                           |                           |
| Aiorzsyby                                                                           |                |         |   | ٦.٦٤   | 285      | <b>20.</b> 2     | 7.4.t          | 4.62  |               |                      | Dissolved<br>Oxygen<br>(mg/L) | ,                     | - SAMPLER            |                                   | PID READI                        | - PID READI                    | - SAMPLING DEVICE         | - PURGING DEVICE          |
|                                                                                     |                |         |   | 108.5  | 100.Y    | 88.1<br>1.88     | <b>34</b> C    | طهرا  |               |                      | ORP<br>(mV)                   |                       | SAMPLER'S SIGNATURE  |                                   | ING IN BREATH                    | PID READING IN CASING (nnm)    | DEVICE                    | DEVICE -                  |
| PARAMETERS FOR WATER QUALITY STABILIZATION Temperature ±1 C(1.8 F) Conductivity ±5% |                |         |   | [ ]{65 | (        | (ארנ             | ( <del> </del> | Chur  |               |                      | Color                         | Br                    | 11/14                |                                   | ONE (ppm)                        |                                | MICR                      | MICR                      |
| S FOR WATER QUA                                                                     |                |         |   | \$.50  | نحر      | 770              | ور ب           | 1.10  |               |                      | Volume<br>Purged<br>(L)       | 12                    |                      | 1///                              |                                  | (                              | MICROPURGE DEDICATED PUMP | MICROPURGE DEDICATED PUMP |
| ALITY STABILIZAT Conductivity ± 5% Turbidity 5 NTU is                               |                |         |   | الداه  | 1.7      | <b>1</b> 2       | 93.0           | 0.44  |               |                      | Pump & Tubing Volumes Purged  | 3                     |                      |                                   | (vented to)                      | (vented to)                    | ATED PUMP                 | ATED PUMP                 |
| BILIZATI                                                                            |                |         |   | R      | $\dashv$ |                  |                | _     | 0.01          |                      | Flow<br>Rate<br>(LPM)         |                       |                      |                                   | (                                | 1                              |                           |                           |

|                        | 5                        | i                       |                            | $\int$           |
|------------------------|--------------------------|-------------------------|----------------------------|------------------|
| Telefax (805) 681-3108 | Telephone (805) 681-3100 | Santa Barbara, CA 93110 | 4213 State Street, STE 100 | TETRA TECH, INC. |

| Page |
|------|
| of   |
| -    |

|                                      | Comments:            | Fe+2 (ppm)                                 | 1455         |  | 1447   | IN I      | 140   | 1431         | 1436   | 135   | OCH      | 1415        | 91h?            | Time                                  | PUMP & TUBING (V) (L) | WATER COLUMN (feet)  | STATIC WAT                   | SAMPLE I.D.                      | MONITORIN                      | PROGRAM NAME              | DATE ——                   |
|--------------------------------------|----------------------|--------------------------------------------|--------------|--|--------|-----------|-------|--------------|--------|-------|----------|-------------|-----------------|---------------------------------------|-----------------------|----------------------|------------------------------|----------------------------------|--------------------------------|---------------------------|---------------------------|
| wat                                  | Comments: 1105 16.16 | Taken                                      | Vacated well |  | Sarple | End Puric |       |              |        |       |          | Begin Purge | Arrived at well | Activity                              | 3ING (V) (L) 2.00     | JMN (feet)           | STATIC WATER LEVEL (ft btoc) | VAMWT                            | MONITORING WELL IDENTIFICATION | HAME BLMP                 | a/6/06                    |
| ump depths are mea                   | SAMPLING:            | Taken immediately before sampling          |              |  |        |           | 13.91 | 23.57        | الداله | 23.66 | 11.36    |             |                 | Water<br>Level<br>(ft btoc)           | 0                     |                      | 12.43° TO                    | DUPLICATE I.D. / COLLECTION TIME | ب                              | TRJ                       | SITE                      |
| M, 16:                               | 41.70                | fore sampling                              |              |  |        |           | 13.40 | TJ.82        | 13.81  | 13.61 | 13.04    |             |                 | Temp<br>(Deg. C)                      |                       | TUBING DIAMETER (in) | TOTAL WELL DEPTH (ft btoc)   | COLLECTION                       | J-MW-7                         | TRIP BLANK I.D.           | SITE NUMBER               |
| 8.03'                                | FILTE                | ·                                          |              |  |        |           | 3145  | 3646         | 1568   | 436   | 411      |             |                 | EC<br>(µmhos/cm)                      |                       | ER (in)              | TH (ft btoc)                 | TIME                             |                                | <b>HOIKY</b>              | r                         |
| of the well ca                       | FILTER LOT #         |                                            |              |  |        |           | 18.5  | 5.24         | 5,74   | 25.2  | :3<br>:3 |             |                 | рН                                    | 5 V (L)               | 3/8                  | } <b>૧.</b> 4                | 1.                               |                                | 11                        |                           |
| sing. If volatily                    | 94.08                | >                                          |              |  |        |           | 1.01  | 16.0         | 0.82   | 0.34  | 0.86     |             |                 | Turbidity<br>(NTU)                    | 10.00                 |                      |                              |                                  |                                |                           |                           |
| les are detected a                   | 10 (8)               | A IDW 15 WEW                               |              |  |        |           | ۲54   | <b>39.</b> C | 28.5   | 3.05  | 3.75     |             |                 | Dissolved<br>Oxygen<br>(mg/L)         |                       | SAMPLER              | '                            | PID READ                         | . PID READ                     | . SAMPLING DEVICE         | - PURGING DEVICE          |
| bove background                      |                      |                                            |              |  |        |           | 0.18  | 138.8        | IAKI   | 166.5 | 162.7    |             |                 | ORP<br>(mV)                           |                       | SAMPLER'S SIGNATURE  |                              | PID READING IN BREATHING         | PID READING IN CASING (ppm)    | DEVICE                    | DEVICE -                  |
| Ann: 14.85                           | pH ±0                | PARAMETERS FOR WATER QUALITY STABILIZATION |              |  |        |           |       | ()[[         |        | likar | رازهر    |             |                 | Color                                 | 3ut                   |                      | 4                            | ONE (ppm)                        |                                | MIC                       | MIC                       |
| Ting the initial scree               | pH ±0.1              | OR WATER QU                                |              |  |        |           | 05 ly | 3.6          | 2.70   | 1.80  | 0.40     |             |                 | Volume<br>Purged<br>(L)               | 1<br>X                |                      | <u> </u>                     | ial)                             |                                | MICROPURGE DEDICATED PUMP | MICROPURGE DEDICATED PUMP |
| cening, the blee                     | Turbidity 5 NTUs     | ALITY STA                                  |              |  |        |           | 2     | - %          |        | 0.40  | 0.45     |             |                 | Pump &<br>Tubing<br>Volumes<br>Purged | 3                     | 1                    |                              | (vented to)                      | (vented to)                    | ATED PUMP                 | ATED PUMP                 |
| screening, the breeding zone will be | 5 NTUs               | BILIZATIO                                  |              |  |        |           | •     |              |        |       | -        | 0.18        |                 | Flow<br>Rate<br>(LPM)                 |                       |                      |                              | . I                              | )<br>                          |                           |                           |

|                        | <u> </u>                 | İ                       | 1                          |                  |
|------------------------|--------------------------|-------------------------|----------------------------|------------------|
| Telefax (805) 681-3108 | Telephone (805) 681-3100 | Santa Barbara, CA 93110 | 4213 State Street, STE 100 | TETRA TECH, INC. |

| Page     |
|----------|
| <u> </u> |
| ĭ,       |
|          |

| mments:      | ATER LEVEL                                 | Fe+2 (ppm)                                 | 1600         |  |  | 1535   | 1522      | 1531    | 1216         | 1511  | 1206        | 1500            | Time                                  | PUMP & TUBING (V) (L) | WATER COLUMN (feet)  | STATIC WATER LEVEL (ft btoc) | SAMPLE I.D                       | MONITORING W                   | PROGRAM NAME              |
|--------------|--------------------------------------------|--------------------------------------------|--------------|--|--|--------|-----------|---------|--------------|-------|-------------|-----------------|---------------------------------------|-----------------------|----------------------|------------------------------|----------------------------------|--------------------------------|---------------------------|
| (I): 47.33 ) | WATER LEVEL (ft btoc) AT TIME OF SAMPLING: | Taken                                      | Vacated well |  |  | Sample | End Purse |         |              | -     | Begin Purge | Arrived at well | Activity                              |                       | N (feet) 11.5        |                              | MANACA                           | MONITORING WELL IDENTIFICATION | AE SLAP                   |
| 19.          | SAMPLING:                                  | Taken immediately before sampling          |              |  |  |        |           | 13.84   | 13.80        | 13.80 |             |                 | Water<br>Level<br>(ft btoc)           | 1,48                  | TUI                  | TOT NE.EL                    | DUPLICATE I.D. / COLLECTION TIME | 2.3                            | TRUE                      |
|              | 200                                        | ore sampling.                              |              |  |  |        |           | 1,82    | 13.47        | 13.16 |             |                 | Temp<br>(Deg. C)                      |                       | TUBING DIAMETER (in) | TOTAL WELL DEPTH (ft btoc)   | COLLECTION                       | 8-MA-P                         | TRIP BLANK I.D.           |
|              | FILTE                                      |                                            |              |  |  |        |           | 12037   | 17811        | 11795 |             |                 | EC<br>(μmhos/cm)                      |                       |                      | TH (ft btoc)                 | TIME                             |                                | VATRIIZI                  |
| 76.1         | FILTER LOT # _                             |                                            |              |  |  |        |           | 1. j.   | 4.70         | 4.76  |             |                 | pН                                    | 5 V (L)               | 3/5                  | 34.X                         | ,                                |                                | 17                        |
|              | Alon                                       | ,                                          |              |  |  |        |           | 0.5%    | 0.13         | 0.70  |             |                 | Turbidity<br>(NTU)                    | 9.K                   |                      |                              |                                  |                                |                           |
|              | Alonshem                                   |                                            |              |  |  |        |           | 3.50    | 3.7)         | 45.5  |             |                 | Dissolved<br>Oxygen<br>(mg/L)         |                       | SAMPLER'             |                              | PID READI                        | PID READI                      | SAMPLING DEVICE           |
|              |                                            |                                            |              |  |  |        |           | 7167    | h. 216       | 211.3 |             |                 | ORP<br>(mV)                           |                       | SAMPLER'S SIGNATURE  |                              | ING IN BREATI                    | PID READING IN CASING (ppm)    | DEVICE                    |
| рн ±0.1      | Temperature ±1 C(1.8 F)                    | PARAMETERS FOR WATER OUALITY STABILIZATION |              |  |  |        |           | (  كالد | ( New        | Char  |             |                 | Color                                 | brid                  | 11/1/20              | <i>~</i>                     | ONE (ppm)                        |                                | MICROPI                   |
|              | 1.8 F)                                     | VATER OUA                                  |              |  |  |        |           | ر<br>چ  | ۹۲. <u>۱</u> | 0.70  |             |                 | Volume<br>Purged<br>(L)               | Ø/                    | 1/2/X)               | <i>h</i> / /                 | 1                                | (                              | MICROPURGE DEDICATED PUMP |
| lurbidity    | Conductivity ± 5%                          | LITY STAB                                  |              |  |  |        |           | 45      | 28.0         | ۲4.0  |             |                 | Pump &<br>Tubing<br>Volumes<br>Purged | 2                     |                      |                              | (vented to)                      | (vented to)                    | ATED PUMP                 |
| 5 NTUs       | y ±5%                                      | ILIZATION                                  |              |  |  |        |           | ~       |              | -     | 014         |                 | Flow<br>Rate<br>(LPM)                 |                       |                      |                              |                                  | 1                              |                           |

|               |                        | 5                        | ĺ                       | Į                          | $\Big]$          |
|---------------|------------------------|--------------------------|-------------------------|----------------------------|------------------|
| ノ <u>こ</u> こ・ | Telefax (805) 681-3108 | Telephone (805) 681-3100 | Santa Barbara, CA 93110 | 4213 State Street, STE 100 | TETRA TECH, INC. |

Page \_\_\_\_ of \_\_\_\_

| Fe+2 (ppm) Taken immediately by WATER LEVEL (ft btoc) AT TIME OF SAMPLING:  Comments: 11 11.11                | Yacated well | 40 | 1745 Sample | 1340 End Purge                        | -339    |                    | -376      | 1343<br>1343 | 13.50     | 1313      | -308                                    | 1303     | 1378 Begin Purge | Arrived at well | Time Activity                               | PUMP & TUBING (V) (L) _ | WATER COLUMN (feet)  | STATIC WATER LEVEL (ft btoc) | SAMPLE I.D. V JNWA               | MONITORING WELL IDENTIFICATION | PROGRAM NAME              |
|---------------------------------------------------------------------------------------------------------------|--------------|----|-------------|---------------------------------------|---------|--------------------|-----------|--------------|-----------|-----------|-----------------------------------------|----------|------------------|-----------------|---------------------------------------------|-------------------------|----------------------|------------------------------|----------------------------------|--------------------------------|---------------------------|
| —— Taken immediate xT TIME OF SAMPLI YY, W                                                                    | /ell         |    | 1           | •                                     | 71.74   | رنابرد             | Bi.h.     | 24.04        | 13.96     | 18:56     | 73.66                                   | 13.61    | ırge             | ıt well         | ty Water Level (ft btoc)                    | ١٥.١                    | ديد                  | oc) 41.95                    |                                  | TFICATION                      | BEND                      |
| Taken immediately before sampling.  ME OF SAMPLING:  11.11                                                    |              |    |             | +                                     | 7.23    | 17.17              | 13.15     | 13.22        | F 13.05   | 81 12.86  | 14.84                                   | 13.20    |                  |                 | Temp<br>el (Deg. C)                         | 11                      | TUBING DIAMETER (in) | _ TOTAL WELL DEPTH (ft btoc) | DUPLICATE I.D. / COLLECTION TIME | 4-MV-9                         | _ TRIP BLANK I.D          |
| FILTER LOT #                                                                                                  |              |    |             |                                       | は、2000年 | 7 5111             | 2 (2011   | 1102 5       | D969 5    | 10861 6   | 10831 6.                                | 9 89601  |                  |                 | EC<br>(µmhos/cm)                            | 5 V (L)                 |                      | TH (ft btoc) 45.2            | TIME                             |                                | CH BLCA                   |
| =                                                                                                             |              |    |             |                                       | שג על.  | 5.76 4.56          | 5.79 4.99 | 587 6.52     | 5.48 10.1 | 6.35 21.1 | 6.41 1.47                               | hs. 7.24 |                  |                 | pH Turbidity (NTU)                          | (L) 10.05               | 3/8                  | رة                           | 1                                |                                |                           |
| A 10425 464                                                                                                   |              |    |             |                                       | N.Y.    | 4.59               | 4.64      | 4.62         | 5.49      | 7.31      | تة ــــــــــــــــــــــــــــــــــــ | גרגו     |                  |                 | Dissolved<br>Oxygen<br>(mg/L)               |                         | SAMPLER'             | ı                            | _ PID READI                      | PID READI                      | SAMPLING DEVICE           |
|                                                                                                               |              |    |             |                                       | 7.5     | 0.871              | 154.1     | 148.7        | (34.)     | (33.2     | 130.9                                   | 132.6    |                  |                 | ORP<br>(mV)                                 |                         | SAMPLER'S SIGNATURE  |                              | PID READING IN BREATHING         | PID READING IN CASING (ppm)    | DEVICE                    |
| PARAMETERS FOR WATER QUALITY STABILIZATION Temperature ±1 C (1.8 F) Conductivity ±5% pH ±0.1 Turbidity 5 NTUs |              |    |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ( m/    | CK*                | ( ((C     | ( العد       | Cher      | (1464)    | נאדנ                                    | Clar     |                  |                 | Color                                       | ma                      | Mich                 |                              | ZONE (ppm)                       |                                | MICROP                    |
| VATER QUAI                                                                                                    |              |    |             |                                       | 3 2     | ٧. <del>أ</del> و. | ير<br>پخ  | ~.z          | ب.<br>80  | a t       | 1.40                                    | 0,70     |                  | 1               | Volume<br>Purged<br>(L)                     | Z                       | 7                    | 1                            | 1                                | (                              | MICROPURGE DEDICATED PUMP |
| LITY STABILIZATI Conductivity ± 5% Turbidity 5 NTUs                                                           |              |    |             |                                       | ر<br>م  | ) K                | ₽.<br>95  | 1.74         |           | 1. DV     | 0.70                                    | 15.0     | 0.14             |                 | Pump & Flow<br>Tubing Rate<br>Volumes (LPM) |                         | •                    |                              | (vented to)                      | (vented to)                    | ITED PUMP                 |

|                        | 5                        | i                       |                            |                  |
|------------------------|--------------------------|-------------------------|----------------------------|------------------|
| Telefax (805) 681-3108 | Telephone (805) 681-3100 | Santa Barbara, CA 93110 | 4213 State Street, STE 100 | TETRA TECH, INC. |

| Page     |
|----------|
| /        |
| <u>e</u> |

| DATE                  | 00/10/10                                         | SITE N                            | SITE NUMBER                | 1                | ŧ            |                    | PURGING DEVICE                | DEVICE                     | MICROPU                                                        | RGE DEDIC               | MICROPURGE DEDICATED PUMP          |                       |
|-----------------------|--------------------------------------------------|-----------------------------------|----------------------------|------------------|--------------|--------------------|-------------------------------|----------------------------|----------------------------------------------------------------|-------------------------|------------------------------------|-----------------------|
| PROGRAM NAME          | AME PAND                                         |                                   | TRIP BLANK I.D.            | 1448KM           | I            | 4                  | SAMPLING DEVICE               | DEVICE                     | MICROPU                                                        | RGE DEDIC               | MICROPURGE DEDICATED PLIMP         |                       |
| MONITORING            | MONITORING WELL IDENTIFICATION _                 |                                   | S-MN-10                    | 1                | •            | •                  |                               | PID READING IN CASING (22) |                                                                | 0.0                     | (                                  | i                     |
| SAMPLE I.D.           | V2MW IF DUPLICATE I.D. / COLLECTION TIME         | UPLICATE I.D. / (                 | COLLECTION                 | TIME             | ı            | -                  | PID READI                     | NG IN BREATHI              | PID READING IN BREATHING ZONE (ppm) (initial) —                | 0.0                     | (vented to)                        | 0                     |
| STATIC WATE           | STATIC WATER LEVEL (ft btoc)                     | 27.54 TOTA                        | TOTAL WELL DEPTH (ft btoc) | TH (ft btoc)     | 5            | 53.7               |                               |                            | ;                                                              |                         |                                    |                       |
| WATER COLUMN (feet)   | MN (feet) 26.2                                   | ľ                                 | TUBING DIAMETER (in)       | R (in)           | 3/8          |                    | SAMPLER!                      | SAMPLER'S SIGNATURE        | DORA P                                                         | 6                       | (                                  | -                     |
| PUMP & TUBING (V) (L) | ING (V) (L)                                      | o.                                | 0.87                       |                  | 5 V (L)      | 28:44:35           | 25.                           |                            | 1                                                              |                         |                                    |                       |
| Time                  | Activity                                         | Water<br>Level<br>(ft btoc)       | Temp<br>(Deg. C)           | EC<br>(µmhos/cm) | Hď           | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | ORP<br>(mV)                | Color                                                          | Volume<br>Purged<br>(L) | Pump &<br>Tubing<br>Volumes        | Flow<br>Rate<br>(LPM) |
| 0/11                  | Arrived at well                                  |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    |                       |
| 1126                  | Begin Purge                                      |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    | 5 20                  |
| 1/29                  |                                                  | 28.46                             | 19.07                      | 8869             | 83.5         | 39.7               | 84.0                          | 61.8                       | cloudy                                                         | 090                     | 1.03                               | _ :                   |
| 1132                  |                                                  | 28.74                             | 18.86                      |                  | 5.8/         | 5.8/ 39.1          | 0.33                          | 72.2                       | cloudy                                                         | 1,80                    |                                    |                       |
| 1135                  |                                                  | 18.92                             | 8.88                       | 9/58             | 577          | 39.7               | 80.0                          | 1.87                       | cloudy                                                         | 270                     |                                    |                       |
| 1138                  |                                                  | 29.17                             | 18.78                      | 414              | 4.3          | 41.3               | 0.26                          | 79.0                       | cloudy                                                         | 2.60                    |                                    |                       |
| 1141                  |                                                  | <b>→9.34</b>                      | 1878                       | 9090 5.78 41.6   | \$.72        | 41.6               | 0.23                          | 2.8                        | cloudy                                                         | 450                     |                                    |                       |
| 14                    | END PURGE                                        |                                   |                            |                  |              |                    |                               |                            |                                                                |                         | $\top$                             |                       |
| 1150                  | SAMPLE                                           |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    |                       |
|                       |                                                  |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    |                       |
|                       |                                                  |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    |                       |
|                       |                                                  |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    |                       |
| 1155                  | Vacated well                                     |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    |                       |
| Fe+2 (ppm)            | Taken ir                                         | Taken immediately before sampling | ore sampling.              |                  |              |                    |                               | 7 TL                       | PARAMETERS FOR WATER QUALITY STABILIZATION                     | ATER QU.                | ALITY STABI                        | LIZATI                |
| WATER LEV             | WATER LEVEL (ft bloc) AT TIME OF SAMPLING: 47.44 | SAMPLING:                         | 44.47                      | FILTER           | FILTER LOT # | A 10               | 4 104 7 2 ABA                 | 4                          | Temperature $\pm 1 \text{ C } (1.8 \text{ F})$<br>pH $\pm 0.1$ | .8 F)                   | Conductivity ± 5% Turbidity 5 NTUs | ± 5%                  |
| Comments:             |                                                  |                                   |                            |                  |              |                    |                               |                            |                                                                |                         |                                    |                       |

|          |                        | 5                        | İ                       | 1                          |                  |
|----------|------------------------|--------------------------|-------------------------|----------------------------|------------------|
| 20/20/20 | Telefax (805) 681-3108 | Telephone (805) 681-3100 | Santa Barbara, CA 93110 | 4213 State Street, STE 100 | TETRA TECH, INC. |

Page f of

| DATE / VOIVO                                         | SITE N                            | SITE NUMBER                | 4                |         |                    | PURGING DEVICE                | aOMa                       | MICROPU                                    | MICROPURGE DEDICATED PUMP | ATED PUMP                             |                       |
|------------------------------------------------------|-----------------------------------|----------------------------|------------------|---------|--------------------|-------------------------------|----------------------------|--------------------------------------------|---------------------------|---------------------------------------|-----------------------|
| PROGRAM NAME BAMP                                    |                                   | TRIP BLANK I.D.            | 7                | F       | 100                | •                             | DEVICE                     | MICROPU                                    | MICROPURGE DEDICATED PUMP | ATED PUMP                             |                       |
| MONITORING WELL IDENTIFICATION                       | 4                                 | 2-MW-11                    |                  |         |                    | UU VAB UIA                    | PID READING IN CASING (mm) |                                            | <i>6.3</i>                | (                                     | 0.0                   |
| SAMPLE I.D. V2M2/1F DUPLICATE I.D. / COLLECTION TIME | DUPLICATE I.D. / (                | COLLECTION 1               | TIME             | ,       | •                  | PID READII                    | PID READING IN BREATHING   | ING ZONE (ppm) (initial)                   | 0.0                       | (vented to)                           | 0.0                   |
| 毌                                                    | 30.98 TOTA                        | TOTAL WELL DEPTH (ft btoc) | TH (ft btoc)     | 5419    | (9                 |                               |                            | , 47.7                                     | ,                         | ,<br>,                                |                       |
| WATER COLUMN (feet) 239                              |                                   | TUBING DIAMETER (in)       | R (in)           | .W.     | 8/2                | SAMPI EPIS                    | SAMPI EP'S SIGNATI IDE     | O P P P                                    |                           |                                       |                       |
| PUMP & TUBING (V) (L)                                | 0.87                              | 1                          |                  | 5 V (L) | 48.34              |                               |                            |                                            | $\  \cdot \ $             |                                       | 0                     |
| Time Activity                                        | Water<br>Level<br>(ft btoc)       | Temp<br>(Deg. C)           | EC<br>(µmhos/cm) | рН      | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | ORP<br>(mV)                | Color                                      | Volume<br>Purged<br>(L)   | Pump &<br>Tubing<br>Volumes<br>Purged | Flow<br>Rate<br>(LPM) |
| /550 Arrived at well                                 |                                   |                            |                  |         |                    |                               |                            |                                            |                           |                                       |                       |
| 1557 Begin Purge                                     |                                   |                            |                  |         |                    |                               |                            |                                            |                           |                                       | 0.7                   |
| 1600                                                 | 3/43                              | 1770                       | (1180            | 6.23    | 6.74               | 5:28                          | 2.0-                       | Clear                                      | 0.6                       | 67.6                                  |                       |
| 1603                                                 | 31.61                             | 17.79                      | 11332            | 6/2     | 283                | 234                           | 7.1                        | <b>~</b>                                   | 1.1                       | 86.7                                  | eet MP                |
| 1606                                                 | 31.77                             | 178                        | 11379            | 6.07    | 3./9               | 724                           | 9.8                        | Clear                                      | 63                        | 207                                   | Log Sh                |
| 1609                                                 | 31.94                             | 1780                       | 11390            | 400     | 3.39               | 1.60                          | 9.4                        | Clear                                      | 2.4                       | 2.76                                  | Data                  |
| 1610 END PURGE                                       | 14                                |                            |                  |         |                    |                               |                            |                                            |                           | !                                     | 42,Field              |
| 16.5 CAMPLE                                          |                                   |                            |                  |         |                    |                               |                            |                                            |                           |                                       | ms\Tto0               |
|                                                      |                                   |                            |                  |         |                    |                               |                            |                                            |                           |                                       | ation\For             |
|                                                      |                                   |                            |                  | _       |                    |                               |                            |                                            |                           |                                       | Coordin               |
|                                                      |                                   |                            |                  |         |                    |                               |                            |                                            |                           |                                       | Work\Field            |
|                                                      |                                   |                            |                  |         |                    |                               |                            |                                            |                           |                                       | rive\Field            |
| 1635 Vacated well                                    |                                   |                            |                  |         |                    |                               |                            |                                            |                           |                                       | \IRP_D                |
| Fe+2 (ppm) Taken                                     | Taken immediately before sampling | ore sampling.              |                  |         | •                  |                               | .                          | PARAMETERS FOR WATER OUALITY STABILIZATION | ATER OUA                  | LITY STABI                            | LIZATION              |
| WATER LEVEL (ft btoc) AT TIME OF SAMPLING:           | SAMPLING: _                       | 31.96                      | FILTER LOT #     | LOT # _ | A101               | 49th 55. to 1 4               | 4                          | Temperature ±1 C(1                         | .8 F)                     | Conductivity ±5%                      | ± 5%                  |
| Comments:                                            |                                   |                            |                  |         |                    |                               |                            | pH ±0.1                                    |                           | Turbidity 5 NTUs                      | SUTUS                 |

|          |                        | 5                        | Ī                       |                            | J                |
|----------|------------------------|--------------------------|-------------------------|----------------------------|------------------|
| 3 /2/ 22 | Telefax (805) 681-3108 | Telephone (805) 681-3100 | Santa Barbara, CA 93110 | 4213 State Street, STE 100 | TETRA TECH, INC. |

| ¢ | Page |
|---|------|
| ł | _    |
|   | ಲ್ಲಿ |
| ł | _    |

| DATE                  | 20100100                         | SITEN                              | SITE NUMBER                | •                | <b>\</b>                               |                    |                               | ייייייייייייייייייייייייייייייייייייייי | MICROPI                                                                               | MICROPURGE DEDICATED PLIMP | ልፐፍበ pi የአለp                            |                       |
|-----------------------|----------------------------------|------------------------------------|----------------------------|------------------|----------------------------------------|--------------------|-------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-----------------------|
| PROGRAM NAME          | AME BOMP                         | TRIP                               | TRIP BLANK I.D.            | 11 81×14         | 8/17                                   | *                  | SAMPLING DEVICE               | DEVICE                                  | MICROPU                                                                               | MICROPURGE DEDICATED PUMP  | ATED PUMP                               |                       |
| MONITORING            | MONITORING WELL IDENTIFICATION _ | i.                                 | 2-40-12                    | 12               |                                        | (                  |                               |                                         |                                                                                       | 5.5                        | (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 3,0                   |
| SAMPLE I.D.           | JUNE DE                          | . DUPLICATE I.D. / COLLECTION TIME | COLLECTION                 | TIME             | -/-                                    | 1                  | PID READII                    | NG IN BREATH                            | PID READING IN BREATHING ZONE (ppm) (initial) —                                       | 0.0                        | (vented to)                             |                       |
| STATIC WATE           | STATIC WATER LEVEL (ft btoc)     | 77.45 TOT                          | TOTAL WELL DEPTH (ft btoc) | TH (ft btoc)     | 273                                    | 9                  |                               |                                         |                                                                                       |                            |                                         |                       |
| WATER COLUMN (feet)   | 4                                |                                    | TUBING DIAMETER (in)       | ER (in)          | 3/8                                    | ~.                 | SAMPLER'S                     | SAMPLER'S SIGNATTIRE                    | A COL                                                                                 | R                          | ۲,                                      | 1                     |
| PUMP & TUBING (V) (L) |                                  | 0.98                               |                            |                  | 5 V (L)                                | 490                |                               | o de l'aviore                           |                                                                                       |                            |                                         |                       |
| Time                  | Activity                         | Water<br>Level<br>(ft btoc)        | Temp<br>(Deg. C)           | EC<br>(µmhos/cm) | рН                                     | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | ORP<br>(mV)                             | Color                                                                                 | Volume<br>Purged<br>(L)    | Pump &<br>Tubing<br>Volumes<br>Purged   | Flow<br>Rate<br>(LPM) |
| 1305                  | Arrived at well                  |                                    |                            |                  |                                        |                    |                               |                                         |                                                                                       |                            |                                         |                       |
| 310                   | Begin Purge                      |                                    |                            |                  |                                        |                    |                               |                                         |                                                                                       |                            |                                         | #L.0                  |
| 13/4                  |                                  | 10.80                              | 18.91                      | 7490             | 22.5                                   | <u>o</u>           | 6.93                          | -629                                    | Clear                                                                                 | 6                          | 1.02                                    | -                     |
| 1318                  |                                  | 28.11                              | 18.77                      |                  | 753                                    | 9.2                | 42.0                          | -82.4                                   | Clear                                                                                 | 2.0                        | 2.04                                    |                       |
| 3                     |                                  | 28.19                              | 19.17                      | 152 287          | 152                                    | <u>.</u>           | 0.38                          | -83.5                                   | clear                                                                                 | 9.6                        | 306                                     |                       |
| /326                  |                                  | 18.20                              | 19.21                      |                  |                                        | 8.73               | 0.32                          | -942                                    | Clear                                                                                 | 4.0                        | A or                                    | _                     |
| 1330                  |                                  | 38.20                              |                            | - 1              | - 1                                    | 6.55               | 030                           | 586                                     | Clark                                                                                 | 0,0                        | 5.10                                    |                       |
| हिंदी                 | END PURGE                        |                                    |                            | 11               | 1                                      |                    |                               |                                         |                                                                                       | 9                          |                                         | -                     |
| 1335                  | SAMPLE                           |                                    |                            |                  |                                        |                    |                               |                                         |                                                                                       |                            |                                         |                       |
|                       |                                  |                                    |                            |                  |                                        |                    |                               |                                         |                                                                                       |                            |                                         |                       |
|                       |                                  |                                    |                            | ,                |                                        |                    |                               |                                         |                                                                                       |                            |                                         |                       |
| 1340                  | Vacated well                     |                                    |                            |                  |                                        |                    |                               |                                         |                                                                                       |                            |                                         |                       |
| Fe+2 (ppm) .          | Fe+2 (ppm) Taken immediately be  | Taken immediately before sampling. | ore sampling.              | 0                | )<br>H                                 | A 10 1             | 719 115 25 11 OI A            |                                         | PARAMETERS FOR WATER QUALITY STABILIZATION  Temperature +1 C (1 x F) Conductivity +5% | ATER QUA                   | ALITY STABILIZAT                        | ILIZATION             |
| Comments:             |                                  |                                    |                            | 1                | 11111111111111111111111111111111111111 |                    |                               |                                         | pH ±0.1                                                                               |                            | Turbidity 5 NTUs                        | 5 NTUs                |

| , | Page    |
|---|---------|
|   | _       |
|   | e,<br>I |
|   | -       |

| Fe+2 (ppm) WATER LEV                                                                                         | 1255         |  | Onel     | P. W.     | 1236        | 1233         | 1230  | 4     | trei  | 122/        | 210             | Time                                  | PUMP & TUBING (V) (L) | WATER COLUMN (feet)  | STATIC WATI                   | SAMPLE I.D.                      | MONITORIN                      | PROGRAM NAME              | DATE                      |
|--------------------------------------------------------------------------------------------------------------|--------------|--|----------|-----------|-------------|--------------|-------|-------|-------|-------------|-----------------|---------------------------------------|-----------------------|----------------------|-------------------------------|----------------------------------|--------------------------------|---------------------------|---------------------------|
| Fe+2 (ppm) Taken immediately by WATER LEVEL (ft btoc) AT TIME OF SAMPLING:                                   | Vacated well |  | 3 10 MBG | END PURGE |             |              |       |       |       | Begin Purge | Arrived at well | Activity                              | 3ING (V) (L)          | <br> <br>            | STATIC WATER LEVEL (ft btoc)2 | VOSMWI                           | MONITORING WELL IDENTIFICATION | NAME BGMP                 | 90/90/50                  |
| Taken immediately before sampling ME OF SAMPLING:                                                            |              |  |          |           | 26.18       | 25.65        | 55.55 | 45.35 | H.3c  |             |                 | Water<br>Level<br>(ft btoc)           | 0.79                  | 1                    | 15. // TOT                    | DUPLICATE I.D. / COLLECTION TIME | - 50                           | TRUF                      | SITE                      |
| ore sampling. $-6.86$                                                                                        |              |  |          |           | 19./9       | 19.51        | 12.47 | 19.40 | 19.47 |             |                 | Temp<br>(Deg. C)                      |                       | TUBING DIAMETER (in) | _ TOTAL WELL DEPTH (ft btoc)  | COLLECTION                       | - MW-                          | TRIP BLANK I.D            | SITE NUMBER               |
| ı                                                                                                            |              |  |          | }         | 7760        | 8774 5.61    | 2189  | 89/4  | 9469  |             |                 | EC<br>(μmhos/cm)                      |                       | ER (in)              | TH (ft btoc)                  |                                  | _                              | V±78                      | ۲                         |
| FILTER LOT #                                                                                                 |              |  |          |           | 5.04        | 5.6/         | 5.63  | 5.66  | 5.88  |             |                 | рН                                    | 5 V (L)               | 3/8                  | 4                             | -/-                              |                                | 811                       |                           |
| Alou                                                                                                         |              |  |          |           | 12.8        | 1.5          | 147   | 170   | 290   |             |                 | Turbidity<br>(NTU)                    | 3.95                  | <b>'</b>             | 48.7                          |                                  |                                | 77                        |                           |
| 49th St # 01 4                                                                                               |              |  |          |           | 0.35        | <i>k 3</i> 3 | 1.67  | 2.07  | 2.99  |             |                 | Dissolved<br>Oxygen<br>(mg/L)         |                       | SAMPLER"             |                               | PID READI                        | PID READI                      | SAMPLING DEVICE           | . PURGING DEVICE          |
|                                                                                                              |              |  |          |           | <b>७</b> ५७ | 444          | 39.6  | 38-2  | 33.)  |             |                 | ORP<br>(mV)                           |                       | SAMPLER'S SIGNATURE  |                               | PID READING IN BREATHING         | PID READING IN CASING (ppm)    | DEVICE                    | DEVICE                    |
| PARAMETERS FOR WATER QUALITY STABILIZATION Temperature ±1 C(1.8 F) Conductivity ±5% pH ±0.1 Turbidity 5 NTUs |              |  |          |           | clear       | clear        | clear | hazy  | nazy  |             |                 | Color                                 | 6                     | 46                   |                               | ONE (ppm)                        |                                | MICR                      | MICRO                     |
| FOR WATER QUA<br>±1 C(1.8 F)<br>±0.1                                                                         |              |  |          |           | 4.50        | 3.60         | 2.70  | 1.80  | 0.90  |             |                 | Volume<br>Purged<br>(L)               |                       | 800                  |                               | 1 1                              | 11.7                           | MICROPURGE DEDICATED PUMP | MICROPURGE DEDICATED PUMP |
| ALITY STABILIZATI Conductivity ± 5% Turbidity 5 NTUs                                                         |              |  |          |           | 5.69        | \$2.5        | 3.4   | 2.28  | 111   |             |                 | Pump &<br>Tubing<br>Volumes<br>Purged |                       | 6                    | •                             | (vented to)                      | (vented to)                    | ATED PUMP                 | ATED PUMP                 |
| 31LIZATION<br>y ±5%<br>5 NTUs                                                                                |              |  |          |           | *           |              |       |       |       | 0.30        |                 | Flow<br>Rate<br>(LPM)                 |                       | -                    |                               | <b>6.0</b>                       | (vented to)                    |                           |                           |

| Page |
|------|
| -    |
| ef.  |
|      |
| _    |

| Fe+2 (ppm) WATER LEV Comments:                                                                                 | 1435<br>1441   |                 | 1420          | H+1       | 1410        | 1407    | 1404     | 140          | 1358        | 1240            | Time                                  | PUMP & TUBING (V) (L) | WATER COLUMN (feet)  | STATIC WAT                   | SAMPLE I.D.                              | MONITORIN                      | PROGRAM NAME              | DATE                      |
|----------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------------|-----------|-------------|---------|----------|--------------|-------------|-----------------|---------------------------------------|-----------------------|----------------------|------------------------------|------------------------------------------|--------------------------------|---------------------------|---------------------------|
| Fe+2 (ppm) Taken immediately be WATER LEVEL (ft btoo) AT TIME OF SAMPLING:                                     | Vacated well   |                 | SAMPLE        | END PURGE |             |         |          |              | Begin Purge | Arrived at well | Activity                              | ING (V) (L)           |                      | STATIC WATER LEVEL (ft btoc) | LOWWY T                                  | MONITORING WELL IDENTIFICATION | AME BGMP                  | 0-10-100                  |
| Taken immediately before sampling ME OF SAMPLING: 20-76                                                        |                |                 |               |           | 21.03       | 21.03   | 21.03    | 21.03        |             |                 | Water<br>Level<br>(ft btoc)           | 0.76                  | ļ                    | 20.76 TOT                    | DUPLICATE I.D. / COLLECTION TIME V99W64/ | 30                             |                           | SITE                      |
| 20.76                                                                                                          |                |                 |               |           | 19.22       | 14.22   | 19.10    | 19,20        |             |                 | Temp<br>(Deg. C)                      |                       | TUBING DIAMETER (in) | TOTAL WELL DEPTH (ft btoc)   | COLLECTION T                             | 05-AW-2                        | TRIP BLANK I.D            | SITE NUMBER               |
| FILTER LOT #                                                                                                   |                |                 |               |           | 8417        | 305 (EF | 1105 7   | . pati       |             |                 | EC<br>(µmhos/cm)                      |                       | R (in)               | H (ft btoc)                  | IME <b>V99</b> /                         | 7                              | V218 1/71                 | 1                         |
|                                                                                                                |                |                 |               |           | 841 708 475 | 705 491 | 701 492  | 7.03 5.74    |             |                 | pH Turbidity<br>(NTU)                 | 5 V(L) 3.80           | 3/8                  | 45.7                         | 0604/1                                   |                                | 1171                      |                           |
| Alousthold                                                                                                     |                |                 |               |           |             | 250     | 12-0 7   | 92.0 4       |             |                 | Dissolved<br>Oxygen<br>(mg/L)         | 1                     | SAMPLE               |                              | 1700 PID REAL                            | PID REAI                       | SAMPLIN                   | PURGING DEVICE            |
| 4                                                                                                              |                |                 |               |           | -1956       | 1922    | -189.2   | - 282-       |             |                 | ORP<br>(mV)                           |                       | SAMPLER'S SIGNATURE  |                              | DING IN BREATH                           | PID READING IN CASING (ppm)    | SAMPLING DEVICE           | DEVICE                    |
| PARAMETERS FOR WATER QUALITY STABILIZATION  Temperature ±1 C(1.8 F) Conductivity ±5%  pH ±0.1 Turbidity 5 NTUs |                |                 |               |           | Yellas,     | ≾∤      | <b>⋖</b> | Yellow/clans |             |                 | Color                                 | KD 1                  | To Par               |                              | ONE (ppm)                                |                                | MICROP                    | MICROP                    |
| VATER QUAI                                                                                                     |                |                 |               |           | 384         | 8 a l.  | 7/92     | 95.0         |             |                 | Volume<br>Purged<br>(L)               |                       | 20                   |                              | 0.0                                      | 9.0                            | MICROPURGE DEDICATED PUMP | MICROPURGE DEDICATED PUMP |
| LITY STABILIZATI<br>Conductivity ±5%<br>Turbidity 5 NTUs                                                       |                |                 |               |           | · ~         | 278     | 43.5     | j            |             |                 | Pump &<br>Tubing<br>Volumes<br>Purged |                       | (                    |                              | _ (vented to)                            | (vented to)                    | TED PUMP                  | TED PUMP                  |
| LIZATION<br>± 5%<br>NTUs                                                                                       | X:\IRP_Drive\F | ield_Work\Field | <br>Forms\Tto | 042,Fiel  | d_Data_     | Log_Sl  | neet_Mi  | - 1          | 0.32        |                 | Flow<br>Rate<br>(LPM)                 |                       |                      |                              | 0.0                                      | 0.0                            |                           |                           |

TETRA TECH, INC.

4213 State Street, Suite 100 Santa Barbara, CA 93110 Phone (805) 681-3100 FAX (805) 681-3108

1835 West 205th Street

EMAX Labs

SHIPPED TO:

Torrance, CA 90501

CHAIN OF CUSTODY RECORD のののの分

PAGE / OF 02/06/06

SITE

ኅ

20/90 NULLY NULLY to Hypersite 2 YES NO TEMPERATURE BLANK OBSERVATIONS/COMMENTS: 4 EACH COOLER: / TOTAL NUMBER OF CONT TURN-AROUND TIME: no Vocs Standard -iltered Sample Water samples are preserved as indicated on the sample labels. <u>8</u> 10 Number of Containers N 0011 P Δ 4 ታ Ū 3 **Natrix Type** All samples are preserved at 4° C. ebillu2 S.a\fe ANALYTICAL METHODS 323'3/E412'1 N / TOC **TETRA TECH, INC.** COMPANY: 1/160.1 CL/S/ALK/TDS × Stainless Steel Plastic XXIARCI euilose 5 oss a SW8260 Volatile Organica ဝထ္ထ 1525 070 579 1530 1615 25/ 1335 TIME 270618 E = Encore DATE Vandenberg, AFB T99105-06 Kevin McNamara **BGMP** CANSON DINTARO SD = Sediment Joachin Openhals W = Water SAMPLE NO. VOSMUTE VOSMUTE TY MWYN JONE OF TII MMEVIT S = Soil 2TB 117 V2-MW3F TI COM L SAMPLERS (Signatures) 2 MW 3 PROJECT MANAGER Sacol 2 MW PROJECT NAME CLIENT <u>#</u>

TIME: 13:13 TIME: 3.5 13:13 DATE: 17/06 17/06

COMPANY:

FLORING CHULLY

GRUCE 17

RELINQUISHED BY:

ARREDO

PLESTER DO

がほんごう RECEIVED BY:

かとま

SPECIAL SHIPMENT/HANDLING/STORAGE REQUIREMENTS:

3726

METHOD OF SHIPMEN

Tt-IRP-009 (04/26/05) 002

DISTRIBUTION: White = Lab Canary = Client Pink = Tetra Tech, Inc.

**TETRA TECH, INC.**4213 State Street, Suite 100 Santa Barbara, CA 93110 Phone (805) 681-3100 FAX (805) 681-3108

1835 West 205th Street

**EMAX Labs** 

SHIPPED TO:

Torrance, CA 90501

CHAIN OF CUSTODY RECORD CEBO4

DATE 02/06/06 PAGE 2 OF 3

N

SITE

| 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |          |              |                      |                    |          |                  |                     |                                                                        |                  |                                                                                                      |         | ŀ           |                | ľ        |                        |              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------------|----------------------|--------------------|----------|------------------|---------------------|------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------|---------|-------------|----------------|----------|------------------------|--------------|
| <u> </u>   | CLIENT Vandenberg, AFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erg, AFB        |          |              |                      | ∢                  | NALYT    | ICAL I           | ANALYTICAL METHODS  | SO                                                                     |                  |                                                                                                      |         |             |                |          | TURN-AROUND TIME:      |              |
| ā          | PROJECT NAME BGMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MP              |          |              |                      |                    |          | - 5U.            |                     |                                                                        |                  |                                                                                                      |         |             |                |          | Standard               |              |
| <u> </u>   | PROJECT MANAGER Kevin McNamara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nara            | S        |              | -                    |                    | etals    |                  | 1 () ()             | · · · · · · · · · · · · · · · · · · ·                                  |                  |                                                                                                      |         | -           |                |          |                        |              |
| ΙĔ         | TC# T99105-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 <b>5-</b> 06  | ojue6.   | uilose       |                      |                    | W 144    | 1/8/\t           |                     |                                                                        |                  |                                                                                                      |         | -           | ers            |          | OBSERVATIONS/COMMENTS: | MENTS:       |
| Ŋ          | SAMPLERS (Signatures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | ∩ əlii   | <b>9</b> /16 | icides<br>s          |                    | eHA9     | muir             | / N I               |                                                                        | orate            |                                                                                                      |         |             | e<br>ontain    |          | •                      | -            |
| ×          | The section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the se |                 | kloV     | Soid         |                      |                    |          |                  |                     |                                                                        |                  |                                                                                                      |         | əd          |                |          | 707                    | 1 de / mp .  |
| ×          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               | 0928     | 8012         | 1808<br>2808         | 0728               |          |                  |                     | 271 ><br>2 2.8                                                         |                  |                                                                                                      |         | (T xin      | enistr<br>mber | s pare   |                        |              |
| <u> </u>   | SAMPLE NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE TIME       | _        | MS           |                      |                    |          |                  | -                   |                                                                        |                  |                                                                                                      |         | isM         |                |          |                        |              |
| Ξ          | VOSMWZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acts 90/90/20   | <u>⟨</u> | X            |                      | $\hat{\mathbf{x}}$ | \<br>\   |                  |                     |                                                                        |                  |                                                                                                      | -       | 3           | 60             |          | ļ                      |              |
| 2          | V OS MW2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14              | 7257     |              |                      |                    | ×        |                  |                     |                                                                        |                  |                                                                                                      |         | -           | Ρĺ             | X        |                        |              |
| 2          | V99 W603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.              | 7710     |              |                      | ×                  |          |                  |                     |                                                                        |                  |                                                                                                      |         |             | 23             |          |                        |              |
| 4          | V 99 W 603F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7)              | 512      |              |                      |                    | ×        |                  |                     |                                                                        |                  |                                                                                                      |         |             | _              | X        |                        |              |
| -12        | 109M W.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7               | (700 X   | ×            |                      | ×                  | ~        |                  |                     |                                                                        |                  |                                                                                                      |         |             | 49             | ~        |                        |              |
| 2          | V99W604F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77              | 7205     |              |                      |                    | ×        |                  |                     |                                                                        |                  |                                                                                                      |         |             | <u>a</u>       | X        |                        |              |
| 7          | VIMUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.21           | 7%       |              |                      | ×                  |          |                  |                     |                                                                        |                  |                                                                                                      |         |             | 7              |          |                        |              |
| 100        | VLMWSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71              | 0h~      |              |                      |                    | $\times$ |                  |                     |                                                                        | -                |                                                                                                      |         | _           | 7              | ×        |                        |              |
| 6/         | V 2 MW 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7/              | 445      | X            |                      | ×                  |          |                  |                     |                                                                        |                  |                                                                                                      |         |             | 68             | ^        |                        |              |
| B          | フスをダイン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7               | 954      | -            |                      |                    | ×        |                  |                     |                                                                        |                  |                                                                                                      |         | <b>&gt;</b> | ۵              | $\times$ |                        |              |
| <u>  2</u> | MATRIX S = Soil CONTAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONTAINER TYPE: | ပ        | н            | Glass                |                    |          | ESER\            | PRESERVATIVES       | ίŋ                                                                     |                  | 9                                                                                                    |         |             |                |          | TEMPERATUI             | REBENEK<br>K |
| <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - L             | ďо       | 11 11        | Stainless<br>Plastic | ss Steel           |          | sample<br>or san | is are f<br>vrles a | All samples are preserved at 4° C.<br>Water samples are preserved as i | ed at 4<br>enved | All samples are preserved at 4° C.<br>Water samples are preserved as indicated on the sample labels. | sted on | the san     | nnie lat       | 2        | EACH COOLER            | YES NO       |
|            | SD - Securitient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | -        | - 1          | lasin.               |                    |          |                  | 2                   | 2                                                                      |                  |                                                                                                      |         |             |                |          |                        |              |

DISTRIBUTION: White = Lab Canary = Client Pink = Tetra Tech, Inc.

SPECIAL SHIPMENT/HANDLING/STORAGE REQUIREMENTS:

METHOD OF SHIPMEN

00://

106

COMPANY:

COMPANY

7/06

でがた

righter

たがあびろ RECEIVED BY

ALTHON GALLCH

RELINQUISHED BY:

COMPANY:

400

TETRA TECH, INC.

Jachin Belt ALTHEN GIACULA

**TETRA TECH, INC.**4213 State Street, Suite 100 Santa Barbara, CA 93110 Phone (805) 681-3100 FAX (805) 681-3108

1835 West 205th Street

**EMAX Labs** 

SHIPPED TO:

Torrance, CA 90501

CHAIN OF CUSTODY RECORD

Ŋ

90/90/0

PAGE 3 OF 3

CABOA7

DATE

|                    |              |                 | ī                      |                       |          |                   |            |            | <del></del> ; |          | -      |   |                                       |          |   | 3 | Γ                 | -                                                                                                   |                            | Ī           |                    |                                                    |                                         |
|--------------------|--------------|-----------------|------------------------|-----------------------|----------|-------------------|------------|------------|---------------|----------|--------|---|---------------------------------------|----------|---|---|-------------------|-----------------------------------------------------------------------------------------------------|----------------------------|-------------|--------------------|----------------------------------------------------|-----------------------------------------|
| TURN-AROUND TIME:  | Standard     |                 | OBSERVATIONS/COMMENTS: |                       | 14 G 549 | 7 21.5 of 611 011 |            | Ms/msD     |               |          |        |   | · · · · · · · · · · · · · · · · · · · |          |   |   | TEMPERATURE BLANK | EACH COOLER: (FE) NO                                                                                | TOTAL NUMBER OF CONTAINERS | (a) /SC     | METHOD OF SHIPMENT | SPECIAL SHIPMENT/HANDLING/STORAGE<br>REQUIREMENTS: |                                         |
|                    |              |                 | l                      | ə                     | oldme    | S ben             | Filte      |            | ×             |          | X      | 1 |                                       |          |   |   |                   | <u></u>                                                                                             |                            |             | _                  | M                                                  | 2                                       |
|                    |              |                 | s.i                    |                       |          | o Tedr            |            | <b>5</b> 7 | _             | eC       | _      |   |                                       |          |   |   |                   | All samples are preserved at 4⁻ ℃.<br>Water samples are preserved as indicated on the sample labels | ′                          | $\tilde{c}$ | 116℃               | TIME: 13,73                                        | 7.2                                     |
|                    |              |                 |                        | 6                     |          | neniet            |            | 9          | Ċ             | 10       | Q      |   |                                       |          |   |   |                   | mple                                                                                                | ا ن                        | 000!        | ۆ<br>چ             | À.                                                 | I'ME:                                   |
|                    |              |                 |                        |                       | əd       | lųT xin           | deM        | ß          |               |          | $\geq$ |   | _                                     |          |   |   |                   | ne sa                                                                                               | TIME                       | i           | <u> </u>           | ≜                                                  | É                                       |
|                    |              |                 |                        |                       |          | <u>.</u>          |            |            | -             |          |        |   | $\vdash$                              |          |   |   |                   | on #                                                                                                |                            | ۵           | Ü                  | e                                                  | Ι,                                      |
|                    |              |                 |                        |                       |          |                   |            |            |               | _        |        |   | +                                     |          |   |   |                   | cated                                                                                               | 1                          | e.          | 39/2/              | 1/06                                               | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ |
|                    | _            | · · · · · · ·   |                        |                       |          | ·                 |            |            |               |          |        |   | $\vdash$                              |          |   |   | ,                 | ing.                                                                                                | 2                          | 1           | 12                 | 1                                                  | 1.1                                     |
|                    | -            |                 |                        | orate                 | erchic   | 9 0.4             | E31        |            |               |          |        |   | 1                                     |          |   |   |                   | All samples are preserved at 4 ° C.<br>Water samples are preserved as li                            | DATE                       | 7]          | DATE:              | DATE:                                              | DATE:                                   |
|                    |              | ,               | ٠                      |                       |          | S 2.8             |            |            |               |          |        |   |                                       |          |   |   |                   | Ved 8                                                                                               | ľ                          | Ť           | <u> </u>           | <u>                                     </u>       |                                         |
| DS                 |              |                 |                        |                       |          | 941)              | ВЗК        |            |               |          |        |   |                                       |          |   |   | iö                | eser<br>e pre                                                                                       |                            |             |                    |                                                    |                                         |
| H                  |              |                 | OC.                    | L/N                   | l'Glt    | 3.3/E.            | :SE3       |            |               |          |        |   |                                       |          |   |   | IIVE              | are pi<br>es ar                                                                                     | ပ္ခ                        |             | 乀                  |                                                    |                                         |
| ANALYTICAL METHODS | DS           | רא/דו           | V/S/7                  | O.1 C                 | 91/L     | 0/8/0             | E30        |            |               |          |        |   |                                       |          |   | · | PRESERVATIVES:    | oles a                                                                                              | TETRA TECH, INC.           |             | <u>21</u>          | (                                                  |                                         |
| TICA               |              |                 | i b                    | V mui                 | promi    | D 9.8             | ESI        |            |               |          |        |   |                                       | ļ        |   |   | ESE               | samp<br>ter si                                                                                      | Ĭ                          |             | EMA                | EHKK                                               | - WE                                    |
| ALY                |              | stats           | M tz                   | <del>*/-/-</del> (    | 747      | 0109              | ews        | . *        | <b>×</b>      |          | ×      |   |                                       |          |   |   | PR -              | ₹ ≶                                                                                                 | TR/                        |             | j)                 | IT                                                 |                                         |
| Ā                  |              |                 |                        |                       |          | 3270              |            | X          | •             |          |        |   |                                       |          |   |   | -                 | ee                                                                                                  | =                          |             | ž                  |                                                    |                                         |
|                    |              |                 |                        |                       |          | 9270              |            | X          |               | ×        |        |   |                                       | 1        |   |   | Ċ                 | SS                                                                                                  | l                          |             | COMPANY:           | :OMPANY:                                           | COMPANY                                 |
|                    | _            |                 |                        |                       |          | 1 2808            |            |            |               |          |        |   |                                       | ackslash |   |   | ass               | Stainless Steel<br>Plastic                                                                          | <u> </u>                   | -           | <u>8</u>           | 8                                                  | ğ                                       |
|                    |              | 6               | uijosi                 |                       |          | 1 1808            |            |            |               | ~        |        |   |                                       | $\vdash$ |   |   |                   | 万正<br>II II                                                                                         |                            |             |                    |                                                    |                                         |
|                    |              |                 | <u> </u>               |                       |          | 0928              |            |            |               | ×        |        |   |                                       | 1        |   |   | Į.                | ກ<br>ທ                                                                                              |                            |             |                    |                                                    |                                         |
| -                  |              | <u> </u>        | T                      |                       | <u> </u> | 1 0300            | П          |            | 9             | ×        | 6      |   |                                       | <br>1    |   |   | ٥                 | nα                                                                                                  |                            | I           | ٨                  |                                                    | '                                       |
|                    |              |                 |                        |                       |          |                   | TIME       | 122        | 1530          | 1345     | 350    |   |                                       |          |   |   |                   |                                                                                                     |                            |             | - ()               | <i> </i>                                           | ا ر                                     |
|                    |              |                 |                        |                       |          |                   | <u> </u>   |            |               |          | 7      |   |                                       | 1        | _ |   |                   | φs                                                                                                  |                            |             | -X                 | [ / X                                              | 10                                      |
| m                  |              |                 |                        | 3                     |          |                   | DATE       | 90/10/co   |               | ļ        | >      |   | -                                     |          | \ |   | CONTAINER TYPE:   | E = Encore                                                                                          | Lί                         |             | W                  | S                                                  |                                         |
| Vandenberg, AFB    |              | , go            | 99                     |                       |          |                   | ۵          | \$         |               |          |        |   |                                       |          |   |   | 띴                 | H<br>H                                                                                              | $  \sim  $                 | $\int$      | X                  |                                                    | M.                                      |
| berg               | BGMP         | Kevin McNamara  | T99105-06              |                       | -        |                   |            |            |               |          |        |   |                                       |          |   |   | AIN               |                                                                                                     | IA 1                       | 1           |                    |                                                    | ينا                                     |
| ander              | 80           | McN             | ] <u>6</u> 6           |                       |          |                   |            |            |               |          |        |   |                                       |          | \ |   | NO.               |                                                                                                     | SIGNATURE                  | Y           | SIGNATIVE          | SIGNATURE                                          | SIGNATURE                               |
| >                  |              | evin            |                        |                       | ٦,       |                   |            |            |               |          |        |   |                                       |          |   |   | ľ                 | Ĕ                                                                                                   | SIG                        | - !         |                    | SIS                                                |                                         |
|                    |              | ×               |                        |                       | 1        |                   | o.         |            |               |          |        |   |                                       |          | 1 |   | إ                 | er<br>dime                                                                                          |                            |             | 127                | #                                                  | 1                                       |
|                    |              |                 |                        | )<br>(6)              | (1)      |                   | Ž<br>U     | ع          | 11            |          |        |   |                                       |          |   | 1 | S = Soil          | w = water<br>SD = Sediment                                                                          | -~                         | Ž           | Ĭ,                 | 160                                                | F 6                                     |
|                    |              | Ä               |                        | ature.                | Ž        | $\ \cdot\ $       | SAMPLE NO. | 8          | 8             | 0        | 9 F    |   |                                       |          |   | \ | s :               | . გ                                                                                                 | <b>"</b>                   | 7           | \$                 | GALLOLA                                            | A MOST                                  |
|                    | Ä            | NAG             |                        | Signs                 | 200      | II                | rs.        | M8MMTN     | VYMWBF        | 3        | V-MW9F |   | •                                     |          |   |   | ·                 |                                                                                                     | ) B√                       | $\zeta$     | و                  | D BY:                                              | l., 、                                   |
|                    | NA           | T MA            |                        | RS (5                 | 1        | Ŋ.                |            | 7          | 7             | À        | Ĵ      |   |                                       |          |   |   |                   |                                                                                                     | SHEL                       | <i>i</i>    |                    | ISHEI<br>COV                                       | DBY:                                    |
| N.                 | PROJECT NAME | PROJECT MANAGER |                        | SAMPLERS (Signatures) |          | 1/                |            | >          | >             | <u>`</u> |        |   |                                       |          |   |   | MATRIX            | ننِ                                                                                                 | RELINQUISHED BY            | 0000        | ACTIVED BY:        | RELINQUISHED BY:                                   | RECEIVED BY:                            |
| CLIENT             | PRO          | PRO             | # #                    | SAM                   | ×        | ×                 |            |            |               |          |        |   |                                       |          |   | ' | MA                | ਜ਼<br>}<br> -                                                                                       | 교(-                        | 2           | ĕ<br>Æ             | HE A                                               | REC                                     |
|                    |              |                 |                        |                       |          |                   |            | N          | 22            | 23       | 4      | · |                                       | <br>     |   |   |                   |                                                                                                     |                            | 1-          |                    |                                                    | •                                       |
|                    |              |                 |                        |                       |          |                   |            | *          | 1 4           | 1 1      | • 4    |   |                                       |          |   |   |                   |                                                                                                     |                            |             |                    |                                                    |                                         |

DISTRIBUTION: White = Lab Canary = Client Pink = Tetra Tech, Inc.

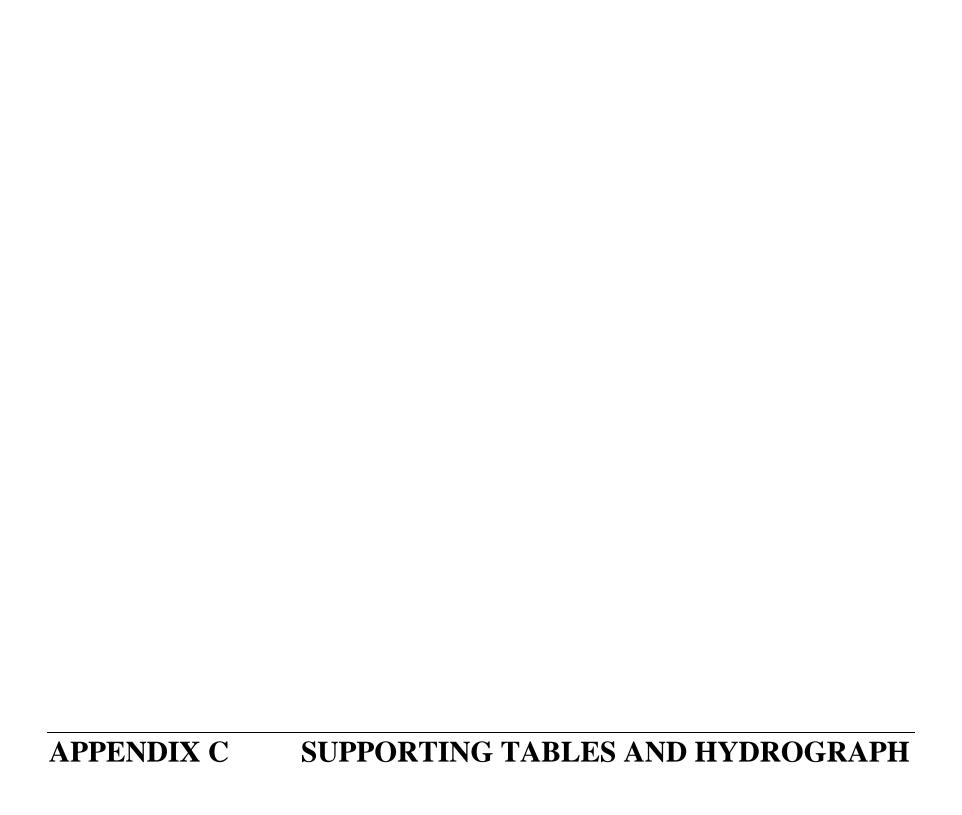



Table C-1
Summary of SVOCs and PAHs
EPA Methods SW8270C and
SW8270C SIM (µg/L)
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |         | Inde     | Indeno(1,2,3- | -cd)pyrene (by SW8270C | e (by SW | (8270C) |          |         |         |         |
|---------|---------|---------|----------|---------------|------------------------|----------|---------|----------|---------|---------|---------|
|         | Fall-00 | Win-01  | Spr-01   | Sum-01        | Fall-01                | Win-02   | Spr-02  | Sum-02   | Fall-02 | Win-03  | Spr-03  |
| 2-MW-1  | QN      | Ð.      | Ð        | Ð             | ND                     | ND       | NA      | ΩN       | NA      | QN      | NA      |
| 2-MW-3  | ON      | QN      | N<br>N   | N<br>N        | QN                     | N<br>ON  | R       | N<br>N   | NA      | Q.      | NA      |
| 2-MW-5  | ND      | N       | R        | QN            | ND                     | QN       | NA      | N<br>N   | NA      | QN      | NA      |
| 2-MW-6  | N<br>ON | R       | QN<br>N  | ND            | ND                     | ND       | NA      | NA       | NA      | NA      | NA      |
| 2-MW-7  | QN      | QN      | R        | QN            | ND                     | N        | NA      | ND<br>ND | NA      | N       | NA      |
| 2-MW-8  | ON      | Q.      | R        | NO            | ND                     | ND       | N<br>N  | ND       | QN      | QN      | N<br>N  |
| 2-MW-9  | QN      | N       | R        | ND            | ND                     | ND       | NA      | N        | NA      | S       | NA      |
| 2-MW-10 | ND      | N       | QN       | ND            | ND                     | QN       | NA      | NA       | NA      | NA      | NA      |
| 2-MW-11 | NA      | NA      | <u>N</u> | QN            | ND                     | QN       | N<br>N  | NA       | NA      | NA      | NA      |
| 2-MW-12 | NA      | NA      | R        | ON            | ON                     | ND       | R       | N<br>N   | NA      | NA      | NA      |
| OS-MW-1 | QN<br>N | QN      | QN<br>N  | N             | ND                     | QN       | NA      | N        | NA      | R       | NA      |
| OS-MW-2 | NA      | NA      | QN       | N             | ND                     | QN       | NA      | ND       | NA      | QN<br>N | NA      |
|         | Sum-03  | Fall-03 | Win-04   | Spr-04        | Sum-04                 | Fall-04  | Win-05  | Spr-05   | Sum-05  | Fall-05 | Win-06  |
| 2-MW-1  | QN      | NA      | QN       | NA            | Ð                      | NA       | QN      | NA       | QN      | NA      | QN<br>Q |
| 2-MW-3  | N<br>N  | NA      | N        | NA            | QN                     | NA       | N       | NA       | N<br>N  | NA      | Q       |
| 2-MW-5  | QN      | NA      | QN       | NA            | QN                     | NA       | R       | NA       | QN<br>N | NA      | Ω       |
| 2-MW-6  | NA      | NA      | NA       | NA            | NA                     | NA       | NA      | NA       | NA      | NA      | NA      |
| 2-MW-7  | N<br>N  | NA      | <u>N</u> | NA            | QN.                    | NA       | N       | NA       | QN<br>N | NA      | QN      |
| 2-MW-8  | QN      | Q.      | QN       | Q.            | R                      | QN       | Q<br>N  | QN<br>N  | ND      | QN      | Q       |
| 2-MW-9  | ON      | NA      | R        | NA            | N<br>Q                 | NA       | Q<br>N  | NA       | QN      | NA      | R       |
| 2-MW-10 | NA      | NA      | NA       | NA            | NA                     | NA       | NA      | NA       | NA      | NA      | NA      |
| 2-MW-11 | NA      | NA      | NA       | NA            | NA                     | NA       | NA      | NA       | NA      | NA      | NA      |
| 2-MW-12 | NA      | NA      | NA       | NA            | NA                     | NA       | NA      | NA       | NA      | NA      | NA      |
| OS-MW-1 | ON.     | NA      | QN       | NA            | N<br>N                 | NA       | N<br>N  | NA       | QN      | NA      | Ð       |
| OS-MW-2 | QN      | NA      | 4.27     | NA            | N<br>N                 | NA       | N       | NA       | QN      | NA      | R       |

Table C-1
Summary of SVOCs and PAHs
EPA Methods SW8270C and
SW8270C SIM (ug/L)
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |          |          | 2-N     | <b>Tethylna</b> | 2-Methylnaphthalene (by SW8270C | (by SW8 | (20C)  |        |         |         |        |
|---------|----------|----------|---------|-----------------|---------------------------------|---------|--------|--------|---------|---------|--------|
|         | Fall-00  | Win-01   | Spr-01  | Sum-01          | Fall-01                         | Win-02  | Spr-02 | Sum-02 | Fall-02 | Win-03  | Spr-03 |
| 2-MW-1  | NA       | N<br>N   | N<br>N  | Ð               | QN                              | Ð       | NA     | ND     | NA      | ND      | NA     |
| 2-MW-3  | R        | R        | N<br>N  | <u>R</u>        | R                               | R       | R      | Q.     | NA      | R       | NA     |
| 2-MW-5  | R        | R        | N<br>N  | R               | R                               | R       | NA     | N<br>N | NA      | R       | NA     |
| 2-MW-6  | <u>N</u> | Q.       | N<br>N  | Q               | R                               | R       | NA     | NA     | NA      | NA      | NA     |
| 2-MW-7  | QN       | N<br>N   | N<br>N  | N<br>N          | R                               | N<br>N  | NA     | R      | NA      | ND      | NA     |
| 2-MW-8  | R        | N<br>N   | N       | 6.3             | 5.7                             | 23      | R      | 21     | R       | 28      | 21.3   |
| 2-MW-9  | QN       | <u>R</u> | N       | N<br>N          | Q.                              | R       | NA     | R      | NA      | R       | NA     |
| 2-MW-10 | QN       | QN       | N<br>N  | N<br>N          | ND                              | R       | NA     | NA     | NA      | NA      | NA     |
| 2-MW-11 | NA       | NA       | N<br>ON | N<br>N          | R                               | R       | R      | NA     | NA      | NA      | NA     |
| 2-MW-12 | NA       | NA       | S       | R               | R                               | N<br>N  | N      | QN     | NA      | NA      | NA     |
| OS-MW-1 | R        | N<br>N   | S       | Q.              | R                               | N<br>N  | NA     | R      | NA      | R       | NA     |
| OS-MW-2 | NA       | NA       | ND      | ND              | ND                              | ND      | NA     | ND     | NA      | ND      | NA     |
|         | ;        | :        |         | ;               | ;                               | :       | ;      | ;      |         | ;       | ;      |
|         | Sum-03   | Fall-03  | Win-04  | Spr-04          | Sum-04                          | Fall-04 | Win-05 | Spr-05 | Sum-05  | Fall-05 | Win-06 |
| 2-MW-1  | R        | NA       | R       | NA              | R                               | NA      | R      | NA     | Q.      | NA      | R      |
| 2-MW-3  | Q        | NA       | QN      | NA              | N<br>N                          | NA      | R      | NA     | R       | NA      | R      |
| 2-MW-5  | QN       | NA       | ON.     | NA              | N<br>N                          | NA      | QN     | NA     | ND      | NA      | ND     |
| 2-MW-6  | NA       | NA       | NA      | NA              | NA                              | NA      | NA     | NA     | NA      | NA      | NA     |
| 2-MW-7  | Q        | NA       | S       | NA              | R                               | NA      | R      | NA     | N<br>N  | NA      | N<br>N |
| 2-MW-8  | 25.1     | 32.0     | 38.2    | 9.5             | 6.7                             | 25      | 21     | 25     | 18      | 13      | 27     |
| 2-MW-9  | ND       | NA       | QN      | NA              | N                               | NA      | S      | NA     | ND      | NA      | N<br>Q |
| 2-MW-10 | NA       | NA       | NA      | NA              | NA                              | NA      | NA     | NA     | NA      | NA      | NA     |
| 2-MW-11 | NA       | NA       | NA      | NA              | NA                              | NA      | NA     | NA     | NA      | NA      | NA     |
| 2-MW-12 | NA       | NA       | NA      | NA              | NA                              | NA      | NA     | NA     | NA      | NA      | NA     |
| OS-MW-1 | R        | NA       | Q       | NA              | N<br>N                          | NA      | R      | NA     | N<br>N  | NA      | R      |
| OS-MW-2 | ND       | NA       | ND      | NA              | ND                              | NA      | ND     | NA     | ND      | NA      | ND     |

Table C-1
Summary of SVOCs and PAHs
EPA Methods SW8270C and
SW8270C SIM (µg/L)
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California

|         |         |         |         | Naphtha | Naphthalene a (by SW8270C) | · SW8270 | ()     |          |         |         |         |
|---------|---------|---------|---------|---------|----------------------------|----------|--------|----------|---------|---------|---------|
|         | Fall-00 | Win-01  | Spr-01  | Sum-01  | Fall-01                    | Win-02   | Spr-02 | Sum-02   | Fall-02 | Win-03  | Spr-03  |
| 2-MW-1  | ND      | ND      | QN      | ND      | ND                         | ND       | NA     |          | NA      | £       | NA      |
| 2-MW-3  | R       | QN      | N       | N<br>N  | R                          | ND       | QN     | N<br>N   | NA      | N       | NA      |
| 2-MW-5  | Ð       | R       | Q.      | QN      | R                          | N<br>N   | NA     | QN.      | NA      | R       | NA      |
| 2-MW-6  | R       | ND      | QN<br>1 | N<br>N  | R                          | N<br>N   | NA     | NA       | NA      | NA      | NA      |
| 2-MW-7  | N<br>N  | QN      | R       | N<br>N  | N<br>N                     | SP       | NA     | QN       | NA      | R       | NA      |
| 2-MW-8  | Q.      | R       | NA      | 5.3     | N                          | 21       | 10     | 18       | 12      | 16      | 15.2    |
| 2-MW-9  | N<br>N  | QN      | N<br>N  | N<br>N  | R                          | QN       | NA     | ND       | NA      | R       | NA      |
| 2-MW-10 | R       | N<br>N  | S       | R       | ND                         | ND       | NA     | NA       | NA      | NA      | NA      |
| 2-MW-11 | NA      | NA      | R       | R       | R                          | ND       | R      | NA       | NA      | NA      | NA      |
| 2-MW-12 | NA      | NA      | R       | N       | R                          | N<br>N   | N      | Q        | NA      | NA      | NA      |
| OS-MW-1 | R       | Q       | ND      | QN      | QN                         | QN       | NA     | <u>N</u> | NA      | N       | NA      |
| OS-MW-2 | NA      | NA      | ND      | QN      | ON                         | N        | NA     | QN<br>N  | NA      | Q.      | NA      |
|         | Sum-03  | Fall-03 | Win-04  | Spr-04  | Sum-04                     | Fall-04  | Win-05 | Spr-05   | Sum-05  | Fall-05 | Win-06  |
| 2-MW-1  | QN      | NA      | QN      | NA      | N<br>N                     | NA       | Q.     | NA       | QN      | NA      | Ð       |
| 2-MW-3  | R       | NA      | R       | NA      | N<br>N                     | NA       | QN     | NA       | R       | NA      | Ð       |
| 2-MW-5  | N       | NA      | NO      | NA      | ON<br>N                    | NA       | ND     | NA       | N<br>N  | NA      | QN<br>N |
| 2-MW-6  | NA      | NA      | NA      | NA      | NA                         | NA       | NA     | NA       | NA      | NA      | NA      |
| 2-MW-7  | R       | NA      | QN      | NA      | R                          | NA       | R      | NA       | R       | NA      | QN.     |
| 2-MW-8  | 18.5    | 25.7    | 28.8    | 6.7     | 9.2                        | 21       | 17     | 22       | 16      | 12      | 23      |
| 2-MW-9  | R       | NA      | QN<br>N | NA      | QN<br>N                    | NA       | ND     | NA       | N       | NA      | QN.     |
| 2-MW-10 | NA      | NA      | NA      | NA      | NA                         | NA       | NA     | NA       | NA      | NA      | NA      |
| 2-MW-11 | NA      | NA      | NA      | NA      | NA                         | NA       | NA     | NA       | NA      | NA      | NA      |
| 2-MW-12 | NA      | NA      | NA      | NA      | NA                         | NA       | NA     | NA       | NA      | NA      | NA      |
| OS-MW-1 | N<br>N  | NA      | R       | NA      | R                          | NA       | R      | NA       | QN      | NA      | S       |
| OS-MW-2 | QN      | NA      | R       | NA      | N<br>N                     | NA       | R      | NA       | Q       | N       | N N     |

SW8270C SIM (µg/L)
IRP Site 2 (Old Base Service Station)
Vandenberg AFB, California Summary of SVOCs and PAHs EPA Methods SW8270C and

|         |         |        | Naphtl    | Naphthalene a                               |         |          |
|---------|---------|--------|-----------|---------------------------------------------|---------|----------|
|         |         | _      | by SW82   | (by SW8270C SIM)                            |         |          |
|         | Fall-04 | Win-05 | Spr-05    | Fall-04 Win-05 Spr-05 Sum-05 Fall-05 Win-06 | Fall-05 | Win-06   |
| 2-MW-8  | 14      | 15     | 18        | 11                                          | 10      | 21       |
| OS-MW-2 | ND      | N      | NA        | QN                                          | NA      | N<br>N   |
|         |         | Inc    | deno(1,2, | Indeno(1,2,3-cd)pyrene                      | ine     |          |
|         | Fall-04 | Win-05 | Spr-05    | Fall-04 Win-05 Spr-05 Sum-05 Fall-05 Win-06 | Fall-05 | Win-06   |
| 2-MW-8  | ON      | 0.27   | Ð         | QN<br>N                                     | QN.     | QN<br>Pl |
| OS-WW-2 | CIN     | Z      | Z         | Ę                                           | ΔN      | Ę        |

#### Definition(s):

 micrograms per liter µg/L NA ND

- not analyzed - not detected; result is less than the method detection limit

#### Note(s):

- The California Department of Health Services (DHS) notification level for naphthalene is 17 µg/L.

EPA Methods SW8270C and SW8270C SIM (μg/L) Comparison of Naphthalene Concentrations Wells 2-MW-8 and OS-MW-2 Table C-2

IRP Site 2 (Old Base Service Station)

Vandenberg AFB, California

|         |          |             |        |         | Naphthalen | alene a |          |         |        |        |        |         |        |
|---------|----------|-------------|--------|---------|------------|---------|----------|---------|--------|--------|--------|---------|--------|
| -       | Analysis | Method      | Sum-03 | Fall-03 | Win-04     | Spr-04  | Sum-04 F | Fall-04 | Win-05 | Spr-05 | Sum-05 | Fall-05 | Win-06 |
| 2-MW-8  | SVOCs    | SW8270C     | 18.5   | 25.7    | 28.8       | 6.7     | 9.2      | 21      | 17     | 22     | 16     | 12      | 23     |
| 2-MW-8  | PAHs     | SW8270C SIM | NA     | NA      | NA         | NA      | NA       | 14      | 15     | 18     | 11     | 10      | 21     |
| OS-MW-2 | SVOCs    | SW8270C     | R      | NA      | R          | NA      | R        | NA      | R      | NA     | ND     | NA      | N<br>Q |
| OS-MW-2 | PAHs     | SW8270C SIM | NA     | NA      | NA         | NA      | NA       | QN      | P.     | NA     | ΩN     | NA      | QN     |

#### Definition(s):

- micrograms per liter

not analyzed
Not detected; result is less than the method detection limit. μg/L NA ND

#### Note(s):

- The California Department of Health Services notification level for naphthalene is 17 μg/L.

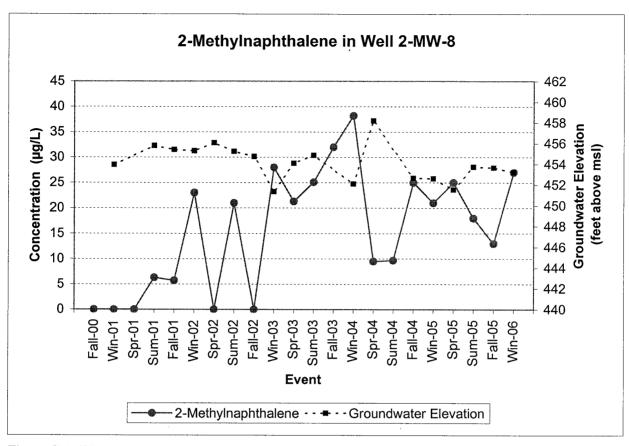



Figure C-1. Historic Concentrations of 2-Methylnaphthalene in Groundwater from Well 2-MW-8. The compound has only been detected in groundwater from well 2-MW-8.